Tumor Biology

, Volume 37, Issue 1, pp 781–789 | Cite as

G6PD downregulation triggered growth inhibition and induced apoptosis by regulating STAT3 signaling pathway in esophageal squamous cell carcinoma

  • Xin Wang
  • Hongtao Liu
  • Xiaqing Zhang
  • Xiaojuan Li
  • Hao Gu
  • Heng Zhang
  • Ruitai Fan
Original Article


There is growing evidence that glucose-6-phosphate dehydrogenase (G6PD) is tightly associated with development and progression of many human tumors. However, its precise molecular mechanisms in esophageal squamous cell carcinoma (ESCC) remain unknown. In the current study, we found that G6PD messenger RNA (mRNA) and protein levels in ESCC cell lines (Eca109, EC1, and EC9706 cells) were significantly higher than that in normal esophageal epithelial cell line Het-1A (P < 0.05) and specific small interfering RNA (siRNA) against G6PD significantly reduced the levels of G6PD mRNA and protein in EC1 cells with highest G6PD levels (P < 0.05). Further investigation revealed that G6PD depletion contributed to the growth suppression in EC1 cells in vitro and EC1 cells xenografted nude mice in vivo, which was associated with the reduces of tumor weight and Ki-67 proliferation index, triggered cell cycle arrest at G0/G1 phase coupled with obvious decreases of cyclin D1 and CDK4 protein levels, and induced cell apoptosis accompanied by the increases of caspase-3 activity and Bax protein expression as well as the decrease of Bcl-2 protein expression in EC1 cells. More importantly, G6PD depletion significantly reduced the level of p-STAT3 protein but did not alter total STAT3 protein level. Taken altogether, our data presented herein suggest that G6PD may function as an important regulator in development and progression of ESCC by manipulating STAT3 signaling pathway and thus may be an underlying molecular target for therapy of the patients with ESCC.


Glucose-6-phosphate dehydrogenase Esophageal squamous cell carcinoma Signal transducer and activator of transcription 3 Cell proliferation Cell cycle Cell apoptosis 


  1. 1.
    Lam KY, Ma LT, Wong J. Measurement of extent of spread of oesophageal squamous carcinoma by serial sectioning. J Clin Pathol. 1996;49(2):124–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int J Cancer. 2002;99(6):860–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  4. 4.
    Stoner GD, Wang LS, Chen T. Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharmacol. 2007;224(3):337–49.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shimada H, Nishi T, Makuuchi H, Ozawa S, Chino O. [EEMR-tube method]. Nihon Rinsho. 2011;69 Suppl 6:231–5.PubMedGoogle Scholar
  6. 6.
    Javle M, Ailawadhi S, Yang GY, Nwogu CE, Schiff MD, Nava HR. Palliation of malignant dysphagia in esophageal cancer: a literature-based review. J Support Oncol. 2006;4(8):365–73. 379.PubMedGoogle Scholar
  7. 7.
    Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347–54.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hu T, Li YS, Chen B, Chang YF, Liu GC, Hong Y, Chen HL, Xiyang YB: Elevated glucose-6-phosphate dehydrogenase expression in the cervical cancer cases is associated with the cancerigenic event of high-risk human papillomaviruses. Exp Biol Med (Maywood) 2015Google Scholar
  10. 10.
    Hu H, Ding X, Yang Y, Zhang H, Li H, Tong S, et al. Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am J Physiol Gastrointest Liver Physiol. 2014;307(6):G611–622.CrossRefPubMedGoogle Scholar
  11. 11.
    Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 2014;63(10):1635–47.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen EY, Cheng A, Lee A, Kuang WJ, Hillier L, Green P, et al. Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome. Genomics. 1991;10(3):792–800.CrossRefPubMedGoogle Scholar
  13. 13.
    Martini G, Toniolo D, Vulliamy T, Luzzatto L, Dono R, Viglietto G, et al. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J. 1986;5(8):1849–55.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Persico MG, Viglietto G, Martini G, Toniolo D, Paonessa G, Moscatelli C, et al. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5’ non-coding region. Nucleic Acids Res. 1986;14(6):2511–22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuo W, Lin J, Tang TK. Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer. 2000;85(6):857–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Bassilian S, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57(19):4242–8.PubMedGoogle Scholar
  17. 17.
    Kuo WY, Tang TK. Effects of G6PD overexpression in NIH3T3 cells treated with tert-butyl hydroperoxide or paraquat. Free Radic Biol Med. 1998;24(7–8):1130–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Yuan W, Chen Z, Wu S, Chen J, Ge J, et al. Overexpression of G6PD is associated with poor clinical outcome in gastric cancer. Tumour Biol. 2012;33(1):95–101.CrossRefPubMedGoogle Scholar
  20. 20.
    Tsukamoto N, Chen J, Yoshida A. Enhanced expressions of glucose-6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase and elevation of reduced glutathione level in cyclophosphamide-resistant human leukemia cells. Blood Cells Mol Dis. 1998;24(2):231–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang C, Zhang Z, Zhu Y, Qin S. Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem. 2014;14(2):280–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Ji Z, Yang G, Shahzidi S, Tkacz-Stachowska K, Suo Z, Nesland JM, et al. Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett. 2006;244(2):182–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Yan L, Li S, Xu C, Zhao X, Hao B, Li H, et al. Target protein for Xklp2 (TPX2), a microtubule-related protein, contributes to malignant phenotype in bladder carcinoma. Tumour Biol. 2013;34(6):4089–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM, et al. Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 2010;47(2):445–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Smolewski P. Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway. Anticancer Drugs. 2006;17(5):487–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Quidville V, Segond N, Tebbi A, Cohen R, Jullienne A, Lepoivre M, et al. Anti-tumoral effect of a celecoxib low dose on a model of human medullary thyroid cancer in nude mice. Thyroid. 2009;19(6):613–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Dong L, Qin S, Li Y, Zhao L, Dong S, Wang Y, et al. High expression of astrocyte elevated gene-1 is associated with clinical staging, metastasis, and unfavorable prognosis in gastric carcinoma. Tumour Biol. 2015;36(3):2169–78.CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Zeng H, Xu L, Xiao D, Zhang H, Wu X, Zheng R, et al. Altered expression of ezrin in esophageal squamous cell carcinoma. J Histochem Cytochem. 2006;54(8):889–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Y, Li K, Ren Z, Li S, Zhang H, Fan Q. Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma. J Histochem Cytochem. 2012;60(7):512–20.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wikman H, Seppanen JK, Sarhadi VK, Kettunen E, Salmenkivi K, Kuosma E, et al. Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. J Pathol. 2004;203(1):584–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.CrossRefPubMedGoogle Scholar
  34. 34.
    Wake MS, Watson CJ. STAT3 the oncogene—still eluding therapy? FEBS J. 2015;282(14):2600–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta. 2010;1805(2):141–52.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Baba M, Yamamoto R, Iishi H, Tatsuta M, Wada A. Role of glucose-6-phosphate dehydrogenase on enhanced proliferation of pre-neoplastic and neoplastic cells in rat liver induced by N-nitrosomorpholine. Int J Cancer. 1989;43(5):892–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Koudstaal J, Makkink B, Overdiep SH. Enzyme histochemical pattern in human tumours. II. Oxidoreductases in carcinoma of the colon and the breast. Eur J Cancer. 1975;11(2):111–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosom Cancer. 2004;40(2):97–108.CrossRefPubMedGoogle Scholar
  41. 41.
    Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459(7247):717–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jones NP, Schulze A. Targeting cancer metabolism—aiming at a tumour’s sweet-spot. Drug Discov Today. 2012;17(5–6):232–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Manganelli G, Masullo U, Passarelli S, Filosa S. Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits. Cardiovasc Hematol Disord Drug Targets. 2013;13(1):73–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol. 2013;15(8):991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle. 2013;12(24):3720–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 1998;273(17):10609–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Baguley BC. Multidrug resistance in cancer. Methods Mol Biol. 2010;596:1–14.CrossRefPubMedGoogle Scholar
  48. 48.
    Ferguson LR, Baguley BC. Multidrug resistance and mutagenesis. Mutat Res. 1993;285(1):79–90.CrossRefPubMedGoogle Scholar
  49. 49.
    Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–88.CrossRefPubMedGoogle Scholar
  50. 50.
    Lin CJ, Ho HY, Cheng ML, You TH, Yu JS, Chiu DT. Impaired dephosphorylation renders G6PD-knockdown HepG2 cells more susceptible to H(2)O(2)-induced apoptosis. Free Radic Biol Med. 2010;49(3):361–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Salvioli S, Storci G, Pinti M, Quaglino D, Moretti L, Merlo-Pich M, et al. Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism. Cell Death Differ. 2003;10(2):163–74.CrossRefPubMedGoogle Scholar
  52. 52.
    Yu H, Jove R. The STATs of cancer--new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.CrossRefPubMedGoogle Scholar
  53. 53.
    Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109(9):1139–42.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anti-Cancer Drugs. 2005;16(6):601–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Li L, Xie H, Liang L, Gao Y, Zhang D, Fang L, et al. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis. 2013;34(2):257–67.CrossRefPubMedGoogle Scholar
  56. 56.
    Ahlqvist K, Saamarthy K, Syed Khaja AS, Bjartell A, Massoumi R. Expression of Id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer. Oncogene. 2013;32(12):1601–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang D, He D, Xue Y, Wang R, Wu K, Xie H, et al. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res. 2011;71(6):2193–202.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, et al. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer. 2013;13:251.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xin Wang
    • 1
  • Hongtao Liu
    • 2
  • Xiaqing Zhang
    • 2
  • Xiaojuan Li
    • 3
  • Hao Gu
    • 1
  • Heng Zhang
    • 1
  • Ruitai Fan
    • 1
  1. 1.Department of RadiotherapyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Laboratory for Cell BiologyCollege of Life Sciences of Zhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.School of Basic Medical SciencesHenan University of Traditional Chinese MedicineZhengzhouPeople’s Republic of China

Personalised recommendations