Tumor Biology

, Volume 37, Issue 1, pp 673–683 | Cite as

Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis

  • Li Zhen
  • Liu Yun-hui
  • Diao Hong-yu
  • Ma Jun
  • Yao Yi-long
Original Article


Growing evidence demonstrates that long noncoding RNAs (lncRNAs) are involved in the progression of various cancers including glioma. Nuclear enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, was not fully explored in glioma. We aimed to determine the expression, roles, and functional mechanisms of NEAT1 in the progression of glioma. By real-time PCR, we suggested that NEAT1 was upregulated in glioma tissues than noncancerous brain tissues. Knockdown of NEAT1 reduced glioma cell proliferation, invasion, and migration. RNA immunoprecipitation assay combined with luciferase reporter assay confirmed miR-449b-5p-specific binding to NEAT1. Furthermore, we verified that c-Met was a directly target of miR-449b-5p. Rescue assays demonstrated NEAT1 functions a molecular sponge for miR-449b-5p and leads to the upregulation of c-Met. This regulation menchaism promotes glioma pathogenesis and may provide a potential target for the prognosis and treatment of glioma.


Long noncoding RNA NEAT1 c-Met Glioma miR-449b-3p 


Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Hegi ME, Janzer RC, Lambiv WL, Gorlia T, Kouwenhoven MC, Hartmann C, et al. European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G: Presence of an oligodendroglioma-like component in newly diagnosed glioblastoma identifies a pathogenetically heterogeneous subgroup and lacks prognostic value: Central pathology review of the eortc_26981/ncic_ce.3 trial. Acta Neuropathol. 2012;123:841–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang Y, Jiang T. Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett. 2013;331:139–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Ohkawa Y, Momota H, Kato A, Hashimoto N, Tsuda Y, Kotani N, Honke K, Suzumura A, Furukawa K, Ohmi Y, Natsume A, Wakabayashi T, Furukawa K: Ganglioside gd3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor alpha and yes. The Journal of biological chemistry 2015.Google Scholar
  6. 6.
    Lin JJ, Zhao TZ, Cai WK, Yang YX, Sun C, Zhang Z, Xu YQ, Chang T, Li ZY: Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition. Oncotarget 2015.Google Scholar
  7. 7.
    Maruyama R, Suzuki H. Long noncoding rna involvement in cancer. BMB Rep. 2012;45:604–11.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Esteller M. Non-coding rnas in human disease. Nat Rev Genet. 2011;12:861–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding rnas: Insights into functions. Nat Rev Genet. 2009;10:155–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, Pu P, Dong L, Kang C: Lncrna pro fi le of glioblastoma reveals the potential role of lncrnas in contributing to glioblastoma pathogenesis. International journal of oncology 2012;40:2004–2012.Google Scholar
  11. 11.
    Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived meg3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88:5119–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang JX, Han L, Bao ZS, Wang YY, Chen LY, Yan W, et al. Chinese Glioma Cooperative G: Hotair, a cell cycle-associated long noncoding rna and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro-Oncology. 2013;15:1595–603.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Choudhry H, Schodel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, et al. Extensive regulation of the non-coding transcriptome by hypoxia: Role of hif in releasing paused rnapol2. EMBO Rep. 2014;15:70–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Guru SC, Agarwal SK, Manickam P, Olufemi SE, Crabtree JS, Weisemann JM, et al. A transcript map for the 2.8-mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res. 1997;7:725–35.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim YS, Hwan JD, Bae S, Bae DH, Shick WA. Identification of differentially expressed genes using an annealing control primer system in stage iii serous ovarian carcinoma. BMC Cancer. 2010;10:576.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, et al. Inhibition of long non-coding rna neat1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A cerna hypothesis: The rosetta stone of a hidden rna language? Cell. 2011;146:353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor pten by competing endogenous mrnas. Cell. 2011;147:344–57.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous mirna sponge lincrna-ror regulates oct4, nanog, and sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25:69–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor- suppressive pten cernas in an oncogenic braf-induced mouse model of melanoma. Cell. 2011;147:382–95.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, et al. An extensive microrna-mediated network of rna-rna interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011;147:370–81.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B: Crnde, a long-noncoding rna, promotes glioma cell growth and invasion through mtor signaling. Cancer letters 2015.Google Scholar
  23. 23.
    Wang P, Liu YH, Yao YL, Li Z, Li ZQ, Ma J, et al. Long non-coding rna casc2 suppresses malignancy in human gliomas by mir-21. Cell Signal. 2015;27:275–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor nf-kappab1 by microrna-9 in human gastric adenocarcinoma. Mol Cancer. 2010;9:16.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tani H, Torimura M, Akimitsu N. The rna degradation pathway regulates the function of gas5 a non-coding rna in mammalian cells. PLoS One. 2013;8, e55684.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP: Noncoding rna gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science signaling 2010;3:ra8.Google Scholar
  27. 27.
    Ma MZ, Chu BF, Zhang Y, Weng MZ, Qin YY, Gong W, et al. Long non-coding rna ccat1 promotes gallbladder cancer development via negative modulation of mirna-218-5p. Cell Death Dis. 2015;6, e1583.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, et al. Neat1 long noncoding rna regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25:169–83.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Choudhry H, Albukhari A, Morotti M, Hider S, Moralli D, Smythies J, Schodel J, Green CM, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris AL, Mole DR: Tumor hypoxia induces nuclear paraspeckle formation through hif-2alpha dependent transcriptional activation of neat1 leading to cancer cell survival. Oncogene 2014.Google Scholar
  30. 30.
    Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, et al. The oestrogen receptor alpha-regulated lncrna neat1 is a critical modulator of prostate cancer. Nat Commun. 2014;5:5383.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhong X, Coukos G, Zhang L. Mirnas in human cancer. Methods Mol Biol. 2012;822:295–306.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microrna-10b. Cancer Res. 2011;71:3563–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, et al. Micrornas/tp53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci U S A. 2012;109:5316–21.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jeon HS, Lee SY, Lee EJ, Yun SC, Cha EJ, Choi E, et al. Combining microrna-449a/b with a hdac inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer. 2012;76:171–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Ren XS, Yin MH, Zhang X, Wang Z, Feng SP, Wang GX, et al. Tumor-suppressive microrna-449a induces growth arrest and senescence by targeting e2f3 in human lung cancer cells. Cancer Lett. 2014;344:195–203.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Li Zhen
    • 1
  • Liu Yun-hui
    • 1
  • Diao Hong-yu
    • 1
  • Ma Jun
    • 2
  • Yao Yi-long
    • 1
  1. 1.Department of NeurosurgeryShengjing Hospital, China Medical UniversityShenyangPeople’s Republic of China
  2. 2.Department of Neurobiology, College of Basic MedicineChina Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations