Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 1909–1918 | Cite as

iTRAQ-based quantitative proteomic analysis of esophageal squamous cell carcinoma

Original Article

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. In this study, our objective was to identify differentially regulated proteins in ESCC using isobaric tag for relative and absolute quantification (iTRAQ) technique and liquid chromatography–tandem mass spectrometry (LC–MS/MS). We compared the protein expression profiles of ESCC tumor tissues with the corresponding adjacent normal tissue from three patients. It was determined that 72 and 57 unique proteins were significantly up-regulated and down-regulated in all three samples. In addition, there were 431 significantly differentially regulated proteins having at least two biological samples. This subject found some of the differential proteins, such as prolyl 4-hydroxylase subunit alpha-1, prolyl 4-hydroxylase subunit alpha-2, and calponin-2, immunoglobulin superfamily containing leucine-rich repeat protein, and prolyl 3-hydroxylase1, which were few studies about them in ESCC. In order to determine the results, we performed another independent experiment. Our results indicated quantitative proteomics, as a robust discovery tool for the identification, differentially regulated proteins in cancers.

Keywords

ESCC Proteomic analysis ITRAQ 2DE/MALDI-TOF MS 

Notes

Conflicts of interest

None

Funding

This study was supported by the grant from the National Natural Science Foundation of China, NO: 81260308, and the Open Subject about Xinjiang Major Diseases of China, NO: SKLIB-XJMDR-2014-12.

Supplementary material

13277_2015_3840_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)
13277_2015_3840_MOESM2_ESM.docx (30 kb)
ESM 2 (DOCX 30 kb)
13277_2015_3840_MOESM3_ESM.docx (23 kb)
ESM 3 (DOCX 22 kb)
13277_2015_3840_MOESM4_ESM.docx (91 kb)
ESM 4 (DOCX 91 kb)
13277_2015_3840_MOESM5_ESM.docx (148 kb)
ESM 5 (DOCX 147 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang P, Xi M, Li Q-Q, He L-R, Liu S-L, Zhao L, et al. The modified Glasgow prognostic score is an independent prognostic factor in patients with inoperable thoracic esophageal squamous cell carcinoma undergoing chemoradiotherapy. J Cancer. 2014;5(8):689–95.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Keszei AP, Alexandra Goldbohm R, Schouten LJ, Jakszyn P, van den Brandt PA. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands. Am J Clin Nutr. 2013;97(1):135–46.CrossRefPubMedGoogle Scholar
  4. 4.
    D’Journo XB, Thomas PA. Current management of esophageal cancer. J Thorac Dis. 2014;6 Suppl 2:S253–64.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Guo X, Hao Y, Kamilijiang M, Hasimu A, Yuan J, Wu G, et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and ingenuity pathway analysis. Tumour Biol. 2015;36(3):1711–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Atrih A, Mudaliar MA, Zakikhani P, Lamont DJ, Huang JT, Bray SE, et al. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br J Cancer. 2014;110(6):1622–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gan CS, Chong PK, et al. Technical, experimental, and biological variations in isobaric tags for relatives and absolute quantitation (iTRAQ). J Proteome Res. 2007;6(2):821–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Gilmore JM, Washburn MP. Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics. 2010;73(11):2078–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao Z, Li G, Chen Y, Li M, Peng F, et al. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography and tandem mass spectrometry. J Histochem Cytochem. 2010;58(6):517–27.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Finn RD, Marshall M, Bateman A. Pfam: visualization of protein–protein interactions in PDB at domain and amino acid resolutions. Bioinformatics. 2005;21(3):410–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Saccone G, Louis C, Zhang H, Petrella V, Di Natale M, Perri M, et al. Male-specific phosphorylated SR proteins in adult flies of the Mediterranean fruitfly Ceratitis capitata. BMC Genetics. 2014;15 Suppl 2:S6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xu Q, Lee C. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res. 2003;31(19):5635–43.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sanford JR, Gray NK, Beckmann K, Cáceres JF. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 2004;18(7):755–68.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fortes P, Longman D, McCracken S, Ip JY, Poot R, Mattaj IW, et al. Identification and characterization of RED120: a conserved PWI domain protein with links to splicing and 3′-end formation. FEBS Lett. 2007;581:3087–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou A, Ou AC, Cho A, Benz Jr EJ, Huang SC. Novel splicing factor RBM25 modulates Bcl-x Pre-mRNA 5′ splice site selection. Mol Cell Biol. 2008;28(19):5924–36.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gilkes DM, Saumendra B, Pallavi C, Denis W, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2013;288(15):10819–29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang K, Corsa CA, Ponik SM, Prior JL, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15(6):677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gilkes DM, Chaturvedi P. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013;73(11):3285–96.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chakravarthi BV, Pathi SS, Goswami MT, et al. The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget. 2014;5(16):6654–69.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pan PW, Zhang Q, Bai F, Hou J, Bai G. Profiling and comparative analysis of glycoproteins in Hs578BST and Hs578T and investigation of prolyl 4-hydroxylase alpha polypeptide II expression and influence in breast cancer cells. Biochemistry (Mosc). 2012;77(5):539–45.CrossRefGoogle Scholar
  21. 21.
    Jarzab B, Wiench M, Fujarewicz K, Simek K, et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 2005;65(4):1587–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Chang KP, Yu JS, Chien KY, Lee CW, Liang Y, et al. Identification of PRDX4 and P4HA2 as metastasis associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology. J Proteome Res. 2011;10(11):4935–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Ridley AJ. Rho GTPases and actin dynamics in membrane pro-trusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaneko M, Takeoka M, Oguchi M, Koganehira Y, et al. Calpon in hl suppresses tumor growth of src-induce d transformed 3Y1 cells in association with a de crease in angiogenesis. Jpn J Cancer Res. 2002;93(8):935–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Yanagisawa Y, Takeoka M, Ehara T, Itano N, Miyagawa S, Taniguchi S. Reduction of calponin H1 expression in human colon cancer blood vessels. Eur J Surg Oncol. 2008;34(5):531–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Ogura T, Kobayashi H, Ueoka Y, Okugawa K, Kato K, Hirakawa T, et al. Adenovirus-mediated calponin h1 gene therapy directed against peritoneal dissemination of ovarian cancer: bifunctional therapeutic effects on peritoneal cell layer and cancer cells. Clin Cancer Res. 2006;12(17):5216–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Hossain MM, Hwang D-Y, Huang Q-Q, Sasaki Y, Jin J-P. Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. Am J Physiol. 2003;284(1):156–67.CrossRefGoogle Scholar
  28. 28.
    Choi SY, Jang JH, Kim KR. Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization. Clin Exp Med. 2011;11(4):219–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Hossain MM, Hwang D-Y, Huang Q-Q, Sasaki Y, Jin J-P. Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. Am J Physiol. 2003;284(1):C156–67.CrossRefGoogle Scholar
  30. 30.
    Nagasawa A, Kubota R, Imamura Y, Nagamine K, et al. Cloning of the cDNA for a new member of the immunoglobulin superfamily (ISLR) containing leucine-rich repeat (LRR). Genomics. 1997;44(3):273–9.CrossRefPubMedGoogle Scholar
  31. 31.
    D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003;28(12):655–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Ishikawa Y, Wirz J, Vranka JA, Nagata K, Bächinger HP. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex. J Biol Chem. 2009;284(26):17641–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ahmad Mir S, Pavithra R, Jain AP, Khan AA, Datta KK, Mohan SV, et al. LC–MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma. J Proteomics. 2015;S1874-3919(15):00231–6.Google Scholar
  34. 34.
    Li C, Guo X, Jianqing Z, Yang M, Ge B, Li Z. Serum differential protein identification of Xinjiang Kazakh esophageal cancer patients based on the two-dimensional liquid-phase chromatography and LTQ MS. Mol Biol Rep. 2014;41(5):2893–905.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of PathologyFirst Affiliated Hospital, Xinjiang Medical UniversityUrumqiChina
  2. 2.Hypertension Center of the People’s Hospital of Xinjiang Uygur Autonomous RegionHypertension Institute of Xinjiang Uygur Autonomous RegionUrumuqiChina
  3. 3.Department of PathologyZhunDong production worker hospital of Petro China Xinjiang oilfield companyChangjiChina

Personalised recommendations