Advertisement

Tumor Biology

, Volume 37, Issue 3, pp 3879–3886 | Cite as

P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene

  • Ming Qian
  • Xinghai Yang
  • Zhenxi Li
  • Cong Jiang
  • Dianwen Song
  • Wangjun Yan
  • Tielong Liu
  • Zhipeng Wu
  • Jinhai Kong
  • Haifeng Wei
  • Jianru Xiao
Original Article

Abstract

P50-associated cyclooxygenase-2 (COX-2) extragenic RNA (PACER) is a novel long noncoding RNA that has been found to activate the COX-2 gene, which may function as an oncogene in osteosarcoma. However, the role of PACER and the relationship between PACER and COX-2 in osteosarcoma progression have been unknown until now. Here, we examined the expression levels of PACER in clinical tumor samples and human osteosarcoma cell lines, assessed the functions of PACER in osteosarcoma cell proliferation and invasion, and then explored the mechanism of PACER dysregulation in osteosarcoma. The results showed that PACER was overexpressed in osteosarcoma tissues and cell lines compared with normal tissues and osteoblasts, respectively. PACER knockdown inhibited the proliferation and invasion of human osteosarcoma cells. Downregulation of PACER significantly suppressed the expression of COX-2, and the effects of PACER on cell proliferation and invasion were rescued by COX-2 overexpression. Furthermore, COX-2 activation by PACER was NF-κB-dependent. The regulation of PACER by CCCTC-binding factor (CTCF) was associated with DNA methylation status. Taken together, these findings suggest that PACER promotes proliferation and metastasis of osteosarcoma cells by activating the COX-2 gene and its own expression was influenced by DNA methylation.

Keywords

Osteosarcoma Long noncoding RNA P50-associated COX-2 extragenic RNA Cell proliferation Cell invasion DNA methylation 

Notes

Conflicts of interest

None

References

  1. 1.
    Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32(6):473–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Gutschner T, Hammerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801.CrossRefGoogle Scholar
  3. 3.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 2009;113(11):2526–34.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.CrossRefPubMedGoogle Scholar
  6. 6.
    Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2015;36(3):1477–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14(4):2311–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, et al. Overexpression of long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cells. 2015;38:5.CrossRefGoogle Scholar
  10. 10.
    Krawczyk M, Emerson BM. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife. 2014;3:e01776.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271(52):33157–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Nzeako UC, Gores GJ. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer. 2002;94(6):1903–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A. 1997;94(7):3336–40.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang Z, He M, Xiao Z, Wu H, Wu Y. Quantitative assessment of the association of COX-2 (cyclooxygenase-2) immunoexpression with prognosis in human osteosarcoma: a meta-analysis. PLoS One. 2013;8(12):e82907.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jiao G, Ren T, Lu Q, Sun Y, Lou Z, Peng X, et al. Prognostic significance of cyclooxygenase-2 in osteosarcoma: a meta-analysis. Tumour Biol. 2013;34(5):2489–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee EJ, Choi EM, Kim SR, Park JH, Kim H, Ha KS, et al. Cyclooxygenase-2 promotes cell proliferation, migration and invasion in U2OS human osteosarcoma cells. Exp Mol Med. 2007;39(4):469–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao Q, Wang C, Zhu J, Wang L, Dong S, Zhang G, et al. RNAi-mediated knockdown of cyclooxygenase2 inhibits the growth, invasion and migration of SaOS2 human osteosarcoma cells: a case control study. J Exp Clin Cancer Res. 2011;30:26.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis. 2006;27(3):584–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang H, Zhu L, He H, Zhu S, Zhang W, Liu X, et al. NF-kappa B mediated up-regulation of CCCTC-binding factor in pediatric acute lymphoblastic leukemia. Mol Cancer. 2014;13:5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fiorentino FP, Giordano A. The tumor suppressor role of CTCF. J Cell Physiol. 2012;227(2):479–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Kang JY, Song SH, Yun J, Jeon MS, Kim HP, Han SW, et al. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression. Oncogene. 2015Google Scholar
  22. 22.
    Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the human cyclo-oxygenase-2 gene. Biochem J. 1994;302(3):723–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ming Qian
    • 1
  • Xinghai Yang
    • 1
  • Zhenxi Li
    • 1
  • Cong Jiang
    • 1
  • Dianwen Song
    • 1
  • Wangjun Yan
    • 1
  • Tielong Liu
    • 1
  • Zhipeng Wu
    • 1
  • Jinhai Kong
    • 1
  • Haifeng Wei
    • 1
  • Jianru Xiao
    • 1
  1. 1.Spine Tumor Center, Changzheng HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations