Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 405–412 | Cite as

Clinical significance of serum interleukin-29, interleukin-32, and tumor necrosis factor alpha levels in patients with gastric cancer

  • Kayhan Erturk
  • Didem Tastekin
  • Murat Serilmez
  • Elif Bilgin
  • Hamza Ugur Bozbey
  • Sezai Vatansever
Original Article

Abstract

Many studies suggested that cytokines interleukin (IL)-29, IL-32, and tumor necrosis factor alpha (TNF-α) are implicated in the pathogenesis of malignancies. The purpose of this study was to determine the clinical significance of the serum levels of IL-29, IL-32, and TNF-α in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. The median age at diagnosis was 59.5 years (range 32–82 years). Tumor localization of the majority of the patients was antrum (n = 42, 72.4 %), and tumor histopathology of the majority of the patients was diffuse (n = 43, 74.1 %). The majority of the patients had stage IV disease (n = 41, 70.7 %). Thirty-six (62.1 %) patients had lymph node involvement. The median follow-up time was 66 months (range 1 to 97.2 months). The baseline serum IL-29 concentrations were not different between patients and controls (p = 0.627). The baseline serum IL-32 and TNF-α concentrations of the GC patients were significantly higher (for IL-32, p = 0.014; for TNF-α, p = 0.001). Gender, localization, histopathology, tumor, and lymph node involvement were not found to be correlated with serum IL-29, IL-32, and TNF-α concentrations (p > 0.05). Patients without metastasis (p = 0.01) and patients who responded to chemotherapy (p = 0.04) had higher serum IL-29 concentrations. Patients older than 60 years had higher serum IL-32 (p = 0.002). Serum IL-29, IL-32, and TNF-α levels were not associated with outcome (p = 0.30, p = 0.51, and p = 0.41, respectively). In conclusion, serum levels of IL-32 and TNF-α may be diagnostic markers, and serum IL-29 levels may be associated with good prognosis in patients with GC.

Keywords

Interleukin-29 Interleukin-32 Tumor necrosis factor-alpha Gastric cancer 

Notes

Conflicts of interest

None

References

  1. 1.
    GLOBOCAN (2012) Estimated cancer incidence, mortality and prevalence worldwide in 2012.Google Scholar
  2. 2.
    Leaman DW. Mechanism of interferon action. Prog Mol Subcell Biol. 1998;20:101–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58:2489–99.PubMedGoogle Scholar
  4. 4.
    Fujie H, Tanaka T, Tagawa M, Kaijun N, Watanabe M, Suzuki T, et al. Antitumor activity of type III interferon alone or in combination with type I interferon against human non-small cell lung cancer. Cancer Sci. 2011;102:1977–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J. 2003;370:391–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev. 2010;21:237–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Zitzmann K, Brand S, Baehs S, et al. Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun. 2006;344:1334–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, et al. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol Gastrointest Liver Physiol. 2005;289:G960–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine. 2005;31:109–18.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNF-alpha. Immunity. 2005;22:131–42.PubMedGoogle Scholar
  14. 14.
    Netea MG, Azam T, Ferwerda G, Girardin SE, Walsh M, Park JS, et al. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A. 2005;102:16309–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11:87.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;68:1443–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer. 2012;130:1733–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Kollmar O, Scheuer C, Menger MD, Schilling MK. Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol. 2006;13:263–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Yu X, Zhou B, Zhang Z, Gao Q, Wang Y, Song Y, Pu Y, Chen Y, Duan R, Zhang L, Xi M. Significant association between IL-32 gene polymorphisms and susceptibility to endometrial cancer in Chinese Han women. Tumour Biol. 2015.Google Scholar
  21. 21.
    Seo EH, Kang J, Kim KH, Cho MC, Lee S, Kim HJ, et al. Detection of expressed IL-32 in human stomach cancer using ELISA and immunostaining. J Microbiol Biotechnol. 2008;18:1606–12.PubMedGoogle Scholar
  22. 22.
    Ishigami S, Arigami T, Uchikado Y, Setoyama T, Kita Y, Sasaki K, et al. IL-32 expression is an independent prognostic marker for gastric cancer. Med Oncol. 2013;30:472.CrossRefPubMedGoogle Scholar
  23. 23.
    Sorrentino C, Di Carlo E. Expression of IL-32 in human lung cancer is related to the histotype and metastatic phenotype. Am J Respir Crit Care Med. 2009;180:769–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Nishida A, Andoh A, Inatomi O, Fujiyama Y. Interleukin-32 expression in the pancreas. J Biol Chem. 2009;284:17868–76.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kang YH, Park MY, Yoon DY, Han SR, Lee CI, Ji NY, et al. Dysregulation of overexpressed βα in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-κB and Bcl-2. Cancer Lett. 2012;318:226–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Yousif NG, Al-Amran FG, Hadi N, Lee J, Adrienne J. Expression of IL-32 modulates NF-κB and p38 map kinase pathways in human esophageal cancer. Cytokine. 2013;61:223–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Park JS, Choi SY, Lee JH, Lee M, Nam ES, Jeong AL, et al. Interleukin-32beta stimulates migration of MDA-MB-231 and MCF-7 cells via the VEGF-STAT3 signaling pathway. Cell Oncol. 2013;36:493–503.CrossRefGoogle Scholar
  28. 28.
    Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, et al. Interleukin 32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res. 2014;20:2276–88.CrossRefPubMedGoogle Scholar
  29. 29.
    Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang L, et al. Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression. Cytokine. 2014;65:24–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. Oncol Rep. 2008;19:595–600.PubMedGoogle Scholar
  31. 31.
    Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118:560–70.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des. 2012;18:3831–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhu F, Zhao H, Tian X, Meng X. Association between tumor necrosis factor-α rs1800629 polymorphism and risk of gastric cancer: a meta-analysis. Tumour Biol. 2014;35:1799–803.CrossRefPubMedGoogle Scholar
  34. 34.
    Barrera L, Montes-Servín E, Barrera A, Ramírez-Tirado LA, Salinas-Parra F, Bañales-Méndez JL, et al. Cytokine profile determined by data-mining analysis set into clusters of non-small-cell lung cancer patients according to prognosis. Ann Oncol. 2015;26:428–35.CrossRefPubMedGoogle Scholar
  35. 35.
    Naumnik W, Naumnik B, Niewiarowska K, Ossolinska M, Chyczewska E. Novel cytokines: IL-27, IL-29, IL-31 and IL-33. Can they be useful in clinical practice at the time diagnosis of lung cancer? Exp Oncol. 2012;34:348–53.PubMedGoogle Scholar
  36. 36.
    Guenterberg KD, Grignol VP, Raig ET, Zimmerer JM, Chan AN, Blaskovits FM, et al. Interleukin-29 binds to melanoma cells inducing Jak-STAT signal transduction and apoptosis. Mol Cancer Ther. 2010;9:510–20.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Maher SG, Sheikh F, Scarzello AJ, Romero-Weaver AL, Baker DP, Donnelly RP, et al. IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther. 2008;7:1109–15.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sakitani K, Hirata Y, Hayakawa Y, Serizawa T, Nakata W, Takahashi R, et al. Role of interleukin-32 in Helicobacter pylori-induced gastric inflammation. Infect Immun. 2012;80:3795–803.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fukamachi T, Ikeda S, Saito H, Tagawa M, Kobayashi H. Expression of acidosis-dependent genes in human cancer nests. Mol Clin Oncol. 2014;2:1160–6.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Suga H, Sugaya M, Miyagaki T, Kawaguchi M, Fujita H, Asano Y, et al. The role of IL-32 in cutaneous T-cell lymphoma. J Invest Dermatol. 2014;134:1428–35.CrossRefPubMedGoogle Scholar
  41. 41.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest. 2007;117:1175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tahara E. Molecular aspects of invasion and metastasis of stomach cancer. Verh Dtsch Ges Pathol. 2000;84:43–9.PubMedGoogle Scholar
  44. 44.
    Conti P, Youinou P, Theoharides TC. Modulation of autoimmunity by the latest interleukins (with special emphasis on IL-32). Autoimmun Rev. 2007;6:131–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Calabrese F, Baraldo S, Bazzan E, Lunardi F, Rea F, Maestrelli P, et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178:894–901.CrossRefPubMedGoogle Scholar
  46. 46.
    Nold-Petry CA, Rudloff I, Baumer Y, Ruvo M, Marasco D, Botti P, et al. IL-32 promotes angiogenesis. J Immunol. 2014;192:589–602.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang Y, Wang Z, Zhou Y, Wang X, Xiang J, Chen Z. Dysregulation of over-expressed IL-32 in colorectal cancer induces metastasis. World J Surg Oncol. 2015;13:146.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kagoya Y, Yoshimi A, Kataoka K, Nakagawa M, Kumano K, Arai S, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124:528–42.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kabir S, Daar GA. Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-alpha in patients with gastric carcinoma. Cancer Lett. 1995;95:207–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Macrì A, Versaci A, Loddo S, Scuderi G, Travagliante M, Trimarchi G, et al. Serum levels of interleukin 1beta, interleukin 8 and tumour necrosis factor alpha as markers of gastric cancer. Biomarkers. 2006;11:184–93.CrossRefPubMedGoogle Scholar
  52. 52.
    Roselli M, Guadagni F, Martini F, Spila A, Mariotti S, D’Alessandro R, et al. Association between serum carcinoembryonic antigen and endothelial cell adhesion molecules in colorectal cancer. Oncology. 2003;65:132–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang YY, Lo GH, Lai KH, Cheng JS, Lin CK, Hsu PI. Increased serum concentrations of tumor necrosis factor-alpha are associated with disease progression and malnutrition in hepatocellular carcinoma. J Chin Med Assoc. 2003;66:593–8.PubMedGoogle Scholar
  54. 54.
    Forones NM, Mandowsky SV, Lourenço LG. Serum levels of interleukin-2 and tumor necrosis factor-alpha correlate to tumor progression in gastric cancer. Hepatogastroenterology. 2001;48:1199–201.PubMedGoogle Scholar
  55. 55.
    Szaflarska A, Szczepanik A, Siedlar M, Czupryna A, Sierzega M, Popiela T, et al. Preoperative plasma level of IL-10 but not of proinflammatory cytokines is an independent prognostic factor in patients with gastric cancer. Anticancer Res. 2009;29:5005–12.PubMedGoogle Scholar
  56. 56.
    Guo L, Ou JL, Zhang T, Ma L, Qu LF. Effect of expressions of tumor necrosis factor α and interleukin 1B on peritoneal metastasis of gastric cancer. Tumour Biol. 2015.Google Scholar
  57. 57.
    Kim S, Choi MG, Lee HS, Lee SK, Kim SH, Kim WW, et al. Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules. 2009;14:4300–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Stanilov N, Miteva L, Dobreva Z, Stanilova S. Colorectal cancer severity and survival in correlation with tumour necrosis factor-alpha. Biotechnol Biotechnol Equip. 2014;28:911–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Kayhan Erturk
    • 1
  • Didem Tastekin
    • 1
  • Murat Serilmez
    • 1
  • Elif Bilgin
    • 1
  • Hamza Ugur Bozbey
    • 1
  • Sezai Vatansever
    • 1
  1. 1.Institute of OncologyIstanbul UniversityIstanbulTurkey

Personalised recommendations