Skip to main content

Advertisement

Log in

Malignant tumors of the uterine corpus: molecular background of their origin

  • Review
  • Published:
Tumor Biology

Abstract

Tumors of the uterine corpus can be divided into two main groups: endometrial tumors and mesenchymal tumors. The former ones are common gynecological diseases, whereas malignant mesenchymal tumors, which behave in a much more aggressive way, are quite rare with a poorer prognosis. The most common type of endometrial tumors is endometrioid adenocarcinomas, and in case of mesenchymal tumors, these are carcinosarcomas, or leiomyosarcomas, if only clear types of tumors are taken into account. The objective of this article is to review molecular-genetic abnormalities associated with tumorigenesis of both types of tumors, with focus on the most aggressive forms. This view includes a different expression pattern of genes, usually aberrant in cases of uterine cancer that can arise due to epigenetic modifications, mostly hypermethylation of promoters or microRNA (miRNA)’s interference with concrete genes. Furthermore, clinical predispositions of tumorigenesis, involving hormonal factors, age, and ethnicity, are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Angelo E, Prat J. Uterine sarcomas: a review. Gynecol Oncol. 2009;116:131–9.

    Article  PubMed  Google Scholar 

  2. Zubor P, Kajo K, Stanclova A, et al. Human epithelial growth factor receptor 2 polymorphism and risk of fibroadenoma. Eur J Cancer Prev. 2008;17(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  3. Galo S, Zubor P, Szunyogh N, et al. Sérové hladiny TNF u žien s endometriózou: prospektívna klinická štúdia. Ceska Gynekol. 2005;70(4):286–90.

    CAS  PubMed  Google Scholar 

  4. Culbova M, Lasabova Z, Stanclova A, et al. Metylácia vybraných tumor-supresorových génov v benígnych a malígnych ovariálnych nádoroch. Ceska Gynekol. 2011;76(4):274–9.

    CAS  Google Scholar 

  5. Kudela E, Farkasova A, Visnovsky J. Amplification of 3q26 and 5p15 regions in cervical intraepithelial neoplasia. Acta Obstetrica Scandinav. 2014;93(10):s 997–1002.

    Article  Google Scholar 

  6. Visnovsky J, Kudela E, Farkasova A, et al. Amplification of TERT an TERC genes in cervical intraepithelial neoplasia and cervical cancer. Neuroendocrinol Lett. 2014;35(6):518–22.

    PubMed  Google Scholar 

  7. Plataniotis G, Castiglione M. Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:41–5.

    Article  Google Scholar 

  8. Bansal N, Yendluri V, Wenham RM. The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies. Cancer Control. 2009;16(1):8–13.

    PubMed  Google Scholar 

  9. Gallup DG, Stock RJ. Adenocarcinoma of the endometrium in women 40 years of age or younger. Obstet Gynecol. 1984;64:417–20.

    CAS  PubMed  Google Scholar 

  10. Mortality for malignant tumors of the uterine corpus. American Cancer Society 2003; 98(1): 176–186.

  11. Oliver KE, Enewold LR, Zhu K, Conrads TP, Rose GS, et al. Racial disparities in histopathologic characteristics of uterine cancer are present in older, not younger blacks in an equal-access environment. Gynecol Oncol. 2011;123(1):76–81.

    Article  PubMed  Google Scholar 

  12. Kurman R, Norris H. Evaluation of criteria for distinguishing atypical endometrial hyperplasia from well-differentiated carcinoma. Cancer. 1984;49:2547–59.

    Article  Google Scholar 

  13. Fisher B, Costantino JP, Redmond CK, Fisher ER, et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst. 1994;86(7):527–37.

    Article  CAS  PubMed  Google Scholar 

  14. Bonadona V, Bonaïti B, Olschwang S, Grandjouan S, Huiart L, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;22:2304–10.

    Article  Google Scholar 

  15. Porto ACS, Roider E, Ruzicka T. Cowden syndrome: report of a case and brief reviewing of literature. An Bras Dermatol. 2013;88(6 Suppl 1):52–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Naumann RW. The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the development and treatment of uterine cancer. Gynecol Oncol. 2011;123:411–20.

    Article  CAS  PubMed  Google Scholar 

  17. Cheung LWT, Hennesy BT, Li J, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PteN protein stability. Cancer Discov. 2011;1(2):170–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Markowska A, Pawałowska M, Lubin J, Markowska J. Signalling pathways in endometrial cancer. Contemp Oncol (Pozn). 2014;18(3):143–8.

    CAS  Google Scholar 

  19. Llobet D, Pallarés J, Yeramian A, Santacana M, Eritja N, Velasco A. Molecular pathology of endometrial carcinoma: practical aspects from the diagnostic and therapeutic viewpoint. J Clin Pathol. 2009;62:777–85.

    Article  CAS  PubMed  Google Scholar 

  20. Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, Mutch DG, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 2012;7(2):e30801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Djordjevic B, Barkoh BA, Luthra R, Broaddus RR. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas. Mod Pathol. 2013;26:1401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segev Y, Iqbal J, Lubinski J, Gronwald J, et al. The incidence of endometrial cancer in women with BRCA1 and BRCA2 mutations: an international prospective cohort study. Gynecol Oncol. 2013;130(1):127–31.

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann WK, Takeuchi S, Takeuchi N, Thiel E, Hoelzer D, Koeffler HP. Comparative analysis of hypermethylation of cell cycle control and DNA-mismatch repair genes in low-density and CD34+ bone marrow cells from patients with myelodysplastic syndrome. Leuk Res. 2006;30(11):1347–53.

    Article  CAS  PubMed  Google Scholar 

  24. Capper D, Gaiser T, Hartmann C, Habel A, et al. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol. 2009;117(4):445–56.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou XC, Dowdy SC, Podratz KC, Jiang SW. Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment. Gynecol Oncol. 2007;107:143e53.

    Article  Google Scholar 

  26. Banno K, Yanokura M, Susumu N, Kawaguchi M, Hirao N, Hirasawa A, et al. Relationship of aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer. Oncol Rep. 2006;16:1189e96.

    Google Scholar 

  27. Lai HC, Wang YC, Yu MH, Huang RL, Yuan CC, et al. DNA methylation as a biomarker for the detection of hidden carcinoma in endometrial atypical hyperplasia. Gynecol Oncol. 2014;135(3):552–9.

    Article  CAS  PubMed  Google Scholar 

  28. Fiolka R, Zubor P, Janusicova V, Visnovsky J, et al. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep. 2013;30:2878–86.

    CAS  PubMed  Google Scholar 

  29. Visnovsky J, Fiolka R, Kudela E, Slavik P, Krkoska M, Lasabova Z, et al. Hypermethylation of selected genes in endometrial carcinogenesis. Neuroendocrinol Lett. 2013;34(7):675–80.

    CAS  PubMed  Google Scholar 

  30. Arafa M, Kridelka F, Mathias V, Vanbellinghen JF, Renard I, Foidart JM, et al. High frequency of RASSF1A and RARb2 gene promoter methylation in morphologically normal endometrium adjacent to endometrioid adenocarcinoma. Histopathology. 2008;53:525–32.

    CAS  PubMed  Google Scholar 

  31. Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ. Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res. 2003;9:2277e87.

    Google Scholar 

  32. Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer. 2006;6:212.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sasaki M, Kaneuchi M, Sakuragi N, Dahiya R. Multiple promoters of catechol-O-methyltransferase gene are selectively inactivated by CpG hypermethylation in endometrial cancer. Cancer Res. 2003;63:3101e6.

    Google Scholar 

  34. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104:15805e10.

    Article  Google Scholar 

  35. Chung TK, Cheung TH, Huen NY, Wong KW, et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer. 2009;124(6):1358–65.

    Article  CAS  PubMed  Google Scholar 

  36. Ramón LA, Braza-Boïls A, Gilabert J, Chirivella M, España F, et al. MicroRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer. Hum Reprod. 2012;27(10):3036–45.

    Article  PubMed  Google Scholar 

  37. Torres A, Torres K, Wdowiak P, Paszkowski T, Maciejewski R. Selection and validation of endogenous controls for microRNA expression studies in endometrioid endometrial cancer tissues. Gynecol Oncol. 2013;130(3):588–94.

    Article  CAS  PubMed  Google Scholar 

  38. Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15.

    Article  CAS  PubMed  Google Scholar 

  39. Tsukamoto O, Miura K, Mishima H, Abe S, et al. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol Oncol. 2014;132(3):715–21.

    Article  CAS  PubMed  Google Scholar 

  40. Giuntoli R, Metzinger DS, Dimarco CS, Cha SS, Sloan JA, et al. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol. 2003;89:460–9.

    Article  PubMed  Google Scholar 

  41. Mehine M, Kaasinen E, Mäkinen N, Katainen R, Kämpjärvi K, Pitkänen E. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369:43–53.

    Article  CAS  PubMed  Google Scholar 

  42. Kämpjärvi K, Mäkinen N, Kilpivaara O, Arola J, Heinonen HR, Böhm J. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107(10):1761–5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bashir S, Jiang G, Joshi A, Miller Jr C, Matrai C, et al. Molecular alterations of PIK3CA in uterine carcinosarcoma, clear cell, and serous tumors. Int J Gynecol Cancer. 2014;24(7):1262–7.

    Article  PubMed  Google Scholar 

  44. Livasy CA, Reading FC, Moore DT, Boggess JF. EGFR expression and HER2/neu overexpression/amplification in endometrial carcinosarcoma. Gynecol Oncol. 2006;100(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  45. Rice LW, Stone RL, Xu M, Galgano M, Stoler MH, Everett EN, et al. Biologic targets for therapeutic intervention in endometrioid endometrial adenocarcinoma and malignant mixed müllerian tumors. Am J Obstet Gynecol. 2006;194(4):1119–26.

    Article  CAS  PubMed  Google Scholar 

  46. Skubitz KM, Skubitz APN. Differential gene expression in leiomyosarcoma. Cancer. 2003;98:1029–38.

    Article  CAS  PubMed  Google Scholar 

  47. Ünver NU, Acikalin MF, Öner Ü, Ciftci E, Ozalp SS, Colak E. Differential expression of P16 and P21 in benign and malignant uterine smooth muscle tumors. Arch Gynecol Obstet. 2011;284:483–90.

    Article  PubMed  Google Scholar 

  48. O’Neill CJ, McBride HA, Connolly LE, McCluggage WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumors of uncertain malignant potential. Histopathology. 2007;50:851–8.

    Article  PubMed  Google Scholar 

  49. Lee S, Kang DW, Hudgins-Spivey S, Krust A, et al. Theca-specific estrogen receptor-alpha knockout mice lose fertility prematurely. Endocrinology. 2009;150(8):3855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelley TW, Borden EC, Goldblum JR. Estrogen and progesterone receptor expression in uterine and extrauterine leiomyosarcomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol. 2004;12(4):338–41.

    Article  CAS  PubMed  Google Scholar 

  51. Koivisto-Korander R. Immunohistochemical studies on uterine carcinosarcoma, leiomyosarcoma, and endometrial stromal sarcoma: expression and prognostic importance of ten different markers. Tumor Biol. 2011;32:451–9.

    Article  CAS  Google Scholar 

  52. Xing D, Scangas G, Nitta M, He L, Xu X, et al. A role for BRCA1 in uterine leiomyosarcoma. Cancer Res. 2009;69:8231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayashi T, Horiuchi A, Sano K, et al. Mice-lacking LMP2, immuno-proteasome subunit, as and animal model of spontaneous uterine leiomyosarcoma. Protein Cell. 2010;1:711–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zaloudek CJ, Norris HJ. Mesenchymal tumors of the uterus. In: Fenoglio CM, Wolff M, editors. Progress in surgical pathology, vol. III. New York: Masson Publishing Inc.; 1981. p. 1–35.

    Google Scholar 

  55. Philip PC, Cheung AN. Pathology of uterine leiomyosarcomas and smooth muscle tumors of uncertain malignant potential. Best Pract Res Clin Gastroenterol. 2011;25:691–704.

    Google Scholar 

  56. Mittal K, Joutovsky A. Areas with benign morphologic and immunohistochemical features are associated with some uterine leiomyosarcomas. Gynecol Oncol. 2007;104:362–5.

    Article  CAS  PubMed  Google Scholar 

  57. Madhukar BM, Deshpande KA, Surase SG, Ajmera AP. Malignant transformation of leiomyoma of uterus to leiomyosarcoma with metastasis to ovary. J Obstetri Gynecol India. 2014;64:68–9.

    Google Scholar 

  58. van Meurs HS. A uterine leiomyoma in which a leiomyosarcoma with osteoclast-like giant cells and a metastasis of a ductal breast carcinoma are present. Ann Diagn Pathol. 2012;16:67–70.

    Article  PubMed  Google Scholar 

  59. Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D, et al. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22:1303–11.

    Article  CAS  PubMed  Google Scholar 

  60. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopatology. 2001;39:273–8.

    Article  CAS  Google Scholar 

  61. Davidson B, Abeler VM, Hellesylt E, Holth A, Shih I, et al. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma. Gynecol Oncol. 2013;128:349–55.

    Article  CAS  PubMed  Google Scholar 

  62. Cimbaluk D, Rotmensch J, Scudiere J, Gown A, Bitterman P. Uterine carcinosarcoma: immunohistochemical studies on tissue microarrays with focus on potential therapeutic targets. Gynecol Oncol. 2007;105(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  63. Atkins K, Bell S, Kempson M, Hendrickson M. Myxoid smooth muscle tumors of the uterus. Modern Pathol. 2001;132A:14.

    Google Scholar 

  64. Growdon WB, Roussel BN, Scialabba VL, Foster R, Dias-Santagata D, Iafrate AJ, et al. Tissue-specific signatures of activating PIK3CA and RAS mutations in carcinosarcomas of gynecologic origin. Gynecol Oncol. 2011;121:212–7.

    Article  CAS  PubMed  Google Scholar 

  65. Jung CK, Jung JH. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21:756–63.

    Article  CAS  PubMed  Google Scholar 

  66. Davidson B, Abeler VM, Førsund M, Holth A, Yang Y, Kobayashi Y, et al. Gene expression signatures of primary and metastatic uterine leiomyosarcoma. Hum Pathol. 2014;45:691–700.

    Article  CAS  PubMed  Google Scholar 

  67. Chiang S, Ali R, Melnyk N, et al. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35:1364–72.

    Article  PubMed  Google Scholar 

  68. Jour G, Scarborough JD, Jones RL, Loggers E, Pollack SM, Pritchard CC, et al. Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics. Hum Pathol. 2014;45:1563–71.

    Article  CAS  PubMed  Google Scholar 

  69. Seidel C, Bartel F, Rastetter M, Bluemke K, et al. Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int J Cancer. 2005;114(3):442–7.

    Article  CAS  PubMed  Google Scholar 

  70. Yin L, Cai WJ, Liu CX, Chen YZ, et al. Analysis of PTEN methylation patterns in soft tissue sarcomas by MassARRAY spectrometry. PLoS One. 2013;8(5):e62971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chuang TD, Ho M, Khorram O. The regulatory function of miR-200c on inflammatory and cell-cycle associated genes in SK-LMS-1, a leiomyosarcoma cell line. Reproduct Sci. 2015;22:563–71. doi:10.1177/1933719114553450.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “Molecular diagnostics of cervical cancer” (ITMS: 26220220113), Comenius University grants 303/2011 and 242/2012, VEGA grant 1/0271/12, as well as the APVV-0224-12 grant.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nachajova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brany, D., Dvorska, D., Nachajova, M. et al. Malignant tumors of the uterine corpus: molecular background of their origin. Tumor Biol. 36, 6615–6621 (2015). https://doi.org/10.1007/s13277-015-3824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3824-1

Keywords

Navigation