Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 425–435 | Cite as

E-cadherin increasing multidrug resistance protein 1 via hypoxia-inducible factor-1α contributes to multicellular resistance in colorectal cancer

  • Xi Liang
  • Xueqing Xu
  • Fengchao Wang
  • Ni Li
  • Jianming He
Original Article

Abstract

When cancer cells have been cultured as three-dimensional (3D) cultures or in vivo, they decrease sensitivity to anticancer drugs. This is called multicellular resistance, and the mechanism is not fully understood. Here, we report that E-cadherin increasing multidrug resistance protein 1 (MDR1) via hypoxia-inducible factor-1α (HIF-1α) contributes to multicellular resistance in colorectal cancer. The MDR1 protein level was higher in 3D cultures than in monolayer cells. When dispersed cells from 3D cultures were grown as monolayer cells again, the MDR1 protein level decreased to the similar level of cells maintained as monolayer all through. Knockdown of MDR1 significantly decreased multicellular resistance. Knockdown of E-cadherin decreased MDR1 in 3D cultures but did not detectably change MDR1 in monolayer cells. E-cadherin was expressed uniformly in 3D cultures while the MDR1 protein level was higher in the center of 3D cultures than in the peripheral part. Knockdown of E-cadherin decreased E-cadherin uniformly in 3D cultures but mainly decreased MDR1 at the center of 3D cultures. These suggest that knockdown of E-cadherin decreasing MDR1 may be by an indirect mechanism. HIF-1α was remarkably increased in 3D cultures. Knockdown of E-cadherin decreased intercellular junctions, increased intercellular space, and decreased HIF-1α in 3D cultures. Knockdown of HIF-1α decreased MDR1 in 3D cultures. Knockdown of E-cadherin increased β-catenin uniformly in 3D cultures, and knockdown of β-catenin decreased MDR1 what was opposite to knockdown of E-cadherin decreasing MDR1. Our data reveal that knockdown of E-cadherin decreasing MDR1 via HIF-1α is involved in the mechanism of multicellular resistance in colorectal cancer. Though β-catenin is also involved in the mechanism, it does not play a dominant role.

Keywords

Colorectal cancer Multicellular resistance E-cadherin Multidrug resistance protein 1 Hypoxia-inducible factor-1α β-catenin 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 81000990), the Natural Science Foundation Project of CQ CSTC (grant no. 2009BB5339), and the Science Foundation of Third Military Medical University for the Young Scholar (grant no. 2009XQN32).

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.CrossRefPubMedGoogle Scholar
  3. 3.
    He J, Shin H, Wei X, Kadegowda AK, Chen R, Xie SK. NPC1L1 knockout protects against colitis-associated tumorigenesis in mice. BMC Cancer. 2015;15:189. doi: 10.1186/s12885-015-1230-0.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kolosenko I, Fryknas M, Forsberg S, Johnsson P, Cheon H, Holvey-Bates EG, et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int J Cancer. 2015;136(4):E51–61. doi: 10.1002/ijc.29161.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhan X, Feng X, Kong Y, Chen Y, Tan W. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1. BMC Cancer. 2013;13:180. doi: 10.1186/1471-2407-13-180.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Desoize B, Jardillier J. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol. 2000;36(2–3):193–207.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang CF, Wang YQ, Huang FZ, Nie WP, Liu XY, Jiang XZ. Association between reversal of multidrug resistance by methyl jasmonate and P-glycoprotein ATPase activity in hepatocellular carcinoma. J Int Med Res. 2013;41(4):964–74. doi: 10.1177/0300060513483401.CrossRefPubMedGoogle Scholar
  8. 8.
    Seebacher NA, Richardson DR, Jansson PJ. Glucose modulation induces reactive oxygen species and increases P-glycoprotein-mediated multidrug resistance to chemotherapeutics. Br J Pharmacol. 2015;172(10):2557–72. doi: 10.1111/bph.13079.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Longati P, Jia X, Eimer J, Wagman A, Witt MR, Rehnmark S, et al. 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95. doi: 10.1186/1471-2407-13-95.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Durand RE. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J Natl Cancer Inst. 1986;77(1):247–52.PubMedGoogle Scholar
  11. 11.
    Durand RE. Distribution and activity of antineoplastic drugs in a tumor model. J Natl Cancer Inst. 1989;81(2):146–52.CrossRefPubMedGoogle Scholar
  12. 12.
    He JM, Wang FC, Qi HB, Li Y, Liang HJ. Down-regulation of alphav integrin by retroviral delivery of small interfering RNA reduces multicellular resistance of HT29. Cancer Lett. 2009;284(2):182–8. doi: 10.1016/j.canlet.2009.04.023.CrossRefPubMedGoogle Scholar
  13. 13.
    Haga T, Uchide N, Tugizov S, Palefsky JM. Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation. Apoptosis. 2008;13(1):97–108. doi: 10.1007/s10495-007-0132-2.CrossRefPubMedGoogle Scholar
  14. 14.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54. doi: 10.1158/0008-5472.CAN-07-2938.CrossRefPubMedGoogle Scholar
  15. 15.
    Pryczynicz A, Guzinska-Ustymowicz K, Niewiarowska K, Cepowicz D, Kemona A. PRL-3 and E-cadherin show mutual interactions and participate in lymph node metastasis formation in gastric cancer. Tumour Biol. 2014. doi: 10.1007/s13277-014-1855-7.Google Scholar
  16. 16.
    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333(2):213–21. doi: 10.1016/j.canlet.2013.01.033.CrossRefPubMedGoogle Scholar
  17. 17.
    Linn SC, Honkoop AH, Hoekman K, van der Valk P, Pinedo HM, Giaccone G. p53 and P-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer. Br J Cancer. 1996;74(1):63–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Comerford KM, Cummins EP, Taylor CT. c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res. 2004;64(24):9057–61. doi: 10.1158/0008-5472.CAN-04-1919.CrossRefPubMedGoogle Scholar
  19. 19.
    Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res. 2003;9(2):827–36.PubMedGoogle Scholar
  20. 20.
    Ding Z, Yang L, Xie X, Xie F, Pan F, Li J, et al. Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol. 2010;136(11):1697–707. doi: 10.1007/s00432-010-0828-5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Katayama K, Yamaguchi M, Noguchi K, Sugimoto Y. Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function. Cancer Lett. 2014;345(1):124–31. doi: 10.1016/j.canlet.2013.12.007.CrossRefPubMedGoogle Scholar
  22. 22.
    Hinoshita E, Uchiumi T, Taguchi K, Kinukawa N, Tsuneyoshi M, Maehara Y, et al. Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res. 2000;6(6):2401–7.PubMedGoogle Scholar
  23. 23.
    Mechetner EB, Roninson IB. Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci U S A. 1992;89(13):5824–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Doublier S, Belisario DC, Polimeni M, Annaratone L, Riganti C, Allia E, et al. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast. BMC Cancer. 2012;12:4. doi: 10.1186/1471-2407-12-4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 2008;106(4):1855–65. doi: 10.1111/j.1471-4159.2008.05537.x.PubMedPubMedCentralGoogle Scholar
  26. 26.
    van Rensburg CE, Joone GK, O’Sullivan JF. Clofazimine and B4121 sensitize an intrinsically resistant human colon cancer cell line to P-glycoprotein substrates. Oncol Rep. 2000;7(1):193–5.PubMedGoogle Scholar
  27. 27.
    Li Y, He J, Zhong D, Li J, Liang H. High-mobility group box 1 protein activating nuclear factor-kappaB to upregulate vascular endothelial growth factor C is involved in lymphangiogenesis and lymphatic node metastasis in colon cancer. J Int Med Res. 2015. doi: 10.1177/0300060515581671.Google Scholar
  28. 28.
    Phung YT, Barbone D, Broaddus VC, Ho M. Rapid generation of in vitro multicellular spheroids for the study of monoclonal antibody therapy. J Cancer. 2011;2:507–14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9. doi: 10.1038/nprot.2006.339.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang S, Thor AD, Edgerton S, Yang X. Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-alpha induced apoptosis. Apoptosis. 2006;11(11):1987–97. doi: 10.1007/s10495-006-0084-y.CrossRefPubMedGoogle Scholar
  31. 31.
    Yan SX, Luo XM, Zhou SH, Bao YY, Fan J, Lu ZJ, et al. Effect of antisense oligodeoxynucleotides glucose transporter-1 on enhancement of radiosensitivity of laryngeal carcinoma. Int J Med Sci. 2013;10(10):1375–86. doi: 10.7150/ijms.6855.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Solanas G, Porta-de-la-Riva M, Agusti C, Casagolda D, Sanchez-Aguilera F, Larriba MJ, et al. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci. 2008;121(Pt 13):2224–34. doi: 10.1242/jcs.021667.CrossRefPubMedGoogle Scholar
  33. 33.
    Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 2013;13:73. doi: 10.1186/1471-2407-13-73.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ge X, Zhen F, Yang B, Yang X, Cai J, Zhang C, et al. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1alpha. J Int Med Res. 2014;42(3):628–40. doi: 10.1177/0300060513505491.CrossRefPubMedGoogle Scholar
  35. 35.
    Kihira Y, Yamano N, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, et al. Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1alpha in adipocytes. Int J Biochem Cell Biol. 2011;43(11):1602–11. doi: 10.1016/j.biocel.2011.07.009.CrossRefPubMedGoogle Scholar
  36. 36.
    Yun JA, Kim SH, Hong HK, Yun SH, Kim HC, Chun HK, et al. Loss of E-Cadherin expression is associated with a poor prognosis in stage III colorectal cancer. Oncology. 2014;86(5–6):318–28. doi: 10.1159/000360794.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xi Liang
    • 1
    • 2
  • Xueqing Xu
    • 2
  • Fengchao Wang
    • 3
  • Ni Li
    • 1
  • Jianming He
    • 1
  1. 1.Department of Oncology and Southwest Cancer Center, Southwest HospitalThird Military Medical UniversityChongqingChina
  2. 2.Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping HospitalThird Military Medical UniversityChongqingChina
  3. 3.Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined InjuryThird Military Medical UniversityChongqingChina

Personalised recommendations