Tumor Biology

, Volume 37, Issue 1, pp 323–329 | Cite as

Retinoic acid morpholine amide (RAMA) inhibits expression of Fas ligand through EP1 receptor in colon cancer cells

  • Shao-Xuan Chen
  • Shi-Yu Du
  • Yun-Ting Wang
  • Hong-Chuan Zhao
  • Yan-Li Zhang
  • Li Yao
Original Article

Abstract

Among the members of tumour necrosis factor family Fas ligand on binding to its receptor strongly induces apoptosis of tumour-infiltrating lymphocytes (TIL). Thus, FasL acts as an inhibitor of anti-tumour immune response. The present study demonstrates that retinoic acid morpholine amide (RAMA) significantly suppresses FasL expression in colon cancer cells in a dose- and time-dependent manner. The suppression of FasL mRNA and proteins was significant at a concentration of 30 μM after 48 h in CLT85 and HT26 colon cancer cells. There was around 2.6- and 3.2-fold decrease in FasL mRNA after incubation with 30 μM of RAMA in CLT85 cells and HT26 cells, respectively. The results from Western blot showed a decrease in FasL mRNA and protein expression in both CLT85 and HT26 cells after suppression of cyclooxygenase (COX)-2 and COX-1 by RNAi. However, when COX-2-specific silencer RNA (siCOX-2)- and siCOX-1-treated CLT85 and HT26 cells were exposed to RAMA, inhibition of FasL expression was further suppressed. The siCOX-2-treated CLT85 and HT26 cells on exposure to RAMA showed ∼87 and ∼54 % reduction in FasL mRNA, respectively. Co-culture of Jurkat T cells with RAMA-treated HT26 and CLT85 cells decreased the viability of Jurkat T cells by only 2 and 4.3 %, respectively, compared to 19.5 and 37.3 % in control HT26 and CLT85 cells. The results from real-time reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting showed that suppression of EP1 prevented RAMA-induced FasL suppression in CLT85 cells at both the mRNA and protein levels. Thus, RAMA can be a potent therapeutic agent for the treatment of colon tumours.

Keywords

Tumour necrosis Immune response Cytotoxicity Fas-sensitive 

Notes

Financial disclosure

This work was supported by Project (No: 2013DFA31510) and China-Japan Friendship Hospital Youth Science and Technology Excellence Project (No. 2015-QNYC-B-02).

Conflicts of interest

None

Authors’ contributions

Shao-Xuan Chen, Li Yao and Shi-Yu Du designed the study. Yun-Ting Wang, Hong-Chuan Zhao and Yan-Li Zhang wrote the manuscript. Shi-Yu Du carried out the cell culture and Western blot. All authors approved the final version of the manuscript.

References

  1. 1.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  2. 2.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer initiating cells. Nature. 2007;445:111–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Boman BM, Huang E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J ClinOncol. 2008;26:2828–38.CrossRefGoogle Scholar
  5. 5.
    O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996;184:1075–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Okada K, Komuta K, Hashimoto S, Matsuzaki S, Kanematsu T, Koji T. Frequency of apoptosis of tumor-infiltrating lymphocytes induced by Fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res. 2000;6:3560–4.PubMedGoogle Scholar
  7. 7.
    Bennett MW, O’Connell J, Houston A, Kelly J, O’Sullivan GC, Collins JK, et al. Fas ligand upregulation is an early event in colonic carcinogenesis. J ClinPathol. 2001;54:598–604.Google Scholar
  8. 8.
    Belluco C, Esposito G, Bertorelle R, Alaggio R, Giacomelli L, Bianchi LC, et al. Fas ligand is up-regulated during the colorectal adenoma–carcinoma sequence. Eur J SurgOncol. 2002;28:120–5.CrossRefGoogle Scholar
  9. 9.
    Lambert C, Landau AM, Desbarats J. Fas—beyond death: a regenerative role for Fas in the nervous system. Apoptosis. 2003;8:551–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag–FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol. 2008;294:G263–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;22:22.Google Scholar
  12. 12.
    Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the ‘Fas counterattack’ controversy: blocking Fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res. 2005;65:9817–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol. 1996;270:G393–400.PubMedGoogle Scholar
  14. 14.
    Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 2002;190:279–86.CrossRefPubMedGoogle Scholar
  15. 15.
    Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 1993;122:518–23.PubMedGoogle Scholar
  16. 16.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.PubMedGoogle Scholar
  18. 18.
    Moon RC, McCormick DL, Mehta RG. Inhibition of carcinogenesis by retinoids. Cancer Res. 1983;43:2469.Google Scholar
  19. 19.
    Defer GL, Adle-Biassette H, Ricolfi F, Martin L, Authier FJ, Chomienne C, et al. All-trans retinoic acid in relapsing malignant gliomas: clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neurooncol. 1997;34:169–77.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang EJ, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocyticleukemia. Blood. 1988;72:567–72.PubMedGoogle Scholar
  21. 21.
    Lehman PA, Slattery JT, Franz TJ. Percutaneous absorption of retinoids: influence of vehicle, light exposure, and dose. J Invest Dermatol. 1988;91:56–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Szuts EZ, Harosi FI. Solubility of retinoids in water. Arch Biochem Biophys. 1991;287:297–304.CrossRefPubMedGoogle Scholar
  23. 23.
    Jeong YI, Kim SH, Jung TY, Kim IY, et al. Polyion complex micelles composed of all-trans retinoic acid and poly(ethylene glycol)-grafted chitosan. J Pharm Sci. 2006;95:2348–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Chung KD, Jeong Y-I, Chung CW, Kim DH, Kang DH. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells. Int J Pharmaceutics. 2012;422:454–61.CrossRefGoogle Scholar
  25. 25.
    Crocetti E, Trama A, Stiller C, Caldarella A, et al. Epidemiology of glial and non-glial brain tumors in Europe. Eur J Cancer. 2012;48:1532–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev ClinOncol. 2013;10:14–26.CrossRefGoogle Scholar
  27. 27.
    Stummer W, Kamp MA. The importance of surgical resection in malignant glioma. Curr Opin Neurol. 2009;22:645–9.CrossRefPubMedGoogle Scholar
  28. 28.
    O’Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. British Journal of Cancer. 2008;99:502–12.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    O’Connell J, Houston A, Bennett MW, O’Sullivan GC, Shanahan F. Immune privilege or inflammation? Insights into the Fas ligand enigma. Nat Med. 2001;7:271–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest. 2007;36:25–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Mann B, Gratchev A, Bohm C, Hanski ML, Foss HD, Demel G, et al. FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer. 1999;79:1262–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Younes M, Schwartz MR, Ertan A, Finnie D, Younes A. Fas ligand expression in esophageal carcinomas and their lymph node metastases. Cancer. 2000;88:524–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, et al. The CD95 receptor: apoptosis revisited. Cell. 2007;129:447–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 1999;59:5093–6.PubMedGoogle Scholar
  35. 35.
    Kawamori T, Kitamura T, Watanabe K, Uchiya N, Maruyama T, Narumiya S, et al. Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis. 2005;26:353–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T, et al. Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut. 2004;53:1151–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Miyata Y, Kanda S, Maruta S, Matsuo T, Sakai H, Hayashi T, et al. Relationship between prostaglandin E2 receptors and clinicopathologic features in human prostate cancer tissue. Urology. 2006;68:1360–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K. Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Mol Cancer. 2006;5:62.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Osaki M, Kase S, Kodani I, Watanabe M, Adachi H, Ito H. Expression of Fas and Fas ligand in human gastric adenomas and intestinal-type carcinomas: correlation with proliferation and apoptosis. Gastric Cancer. 2001;4:198–205.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Shao-Xuan Chen
    • 1
  • Shi-Yu Du
    • 2
  • Yun-Ting Wang
    • 3
  • Hong-Chuan Zhao
    • 2
  • Yan-Li Zhang
    • 2
  • Li Yao
    • 1
  1. 1.Department of Endoscopy CenterChina-Japan Friendship HospitalBeijingChina
  2. 2.Department of GastroenterologyChina-Japan Friendship HospitalBeijingChina
  3. 3.Department of OrthopedicsChina-Japan Friendship HospitalBeijingChina

Personalised recommendations