Skip to main content

Advertisement

Log in

TLR2∆22 (-196-174) significantly increases the risk of breast cancer in females carrying proline allele at codon 72 of TP53 gene: a case–control study from four ethnic groups of North Eastern region of India

  • Original Article
  • Published:
Tumor Biology

Abstract

Breast cancer (BC) is the second most common cancer in women. In the North Eastern Region (NER) of India, BC is emerging as an important concern as evidenced by the data available from population and hospital-based cancer registries. Studies on genetic susceptibility to BC are important to understand the increase in the incidence of BC in NER. The present case control study was conducted to investigate the association between tumour suppressor gene TP53 codon 72 polymorphism and innate immune pathway gene TLR2∆22 (-196-174) polymorphism with BC in females of NER of India for the identification of novel biomarker of BC. Four hundred sixty-two histopathologically confirmed BC cases from four states of NER of India, and 770 healthy controls were included by organizing community surveys from the neighbourhood of cases. In our study, no significant association between TP53 codon 72 polymorphisms and the risk of BC was found. However, our study has shown that TP53 codon 72 polymorphism is an important effect modifier. In the present study it was found that females carrying 22 base-pair deletion in the promoter region of their TLR2 gene had two times (AOR= 2.18, 95 % CI 1.13-4.21, p=0.019 in dominant model; AOR= 2.17, 95 % CI 1.09-4.34, p=0.027 in co-dominant model) increased risk of BC whwn they also carry proline allele at codon 72 of their TP53 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar N, Pandey AN, Kumari S, Kishore S. Breast cancer associated with Von Recklinghausen's disease: case report and review of literature. Indian J Surg Oncol. 2014;5(3):205–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amadou A, Hainaut P, Romieu I. Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncol. 2013;2013:906495.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Amadou A, Torres Mejia G, Fagherazzi G, Ortega C, Angeles-Llerenas A, Chajes V, et al. Anthropometry, silhouette trajectory, and risk of breast cancer in Mexican women. Am J Prev Med. 2014;46(3 Suppl 1):S52–64.

    Article  PubMed  Google Scholar 

  5. Mathew A, Gajalakshmi V, Rajan B, Kanimozhi V, Brennan P, Mathew BS, et al. Anthropometric factors and breast cancer risk among urban and rural women in South India: a multicentric case–control study. Br J Cancer. 2008;99(1):207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCormack VA, Mangtani P, Bhakta D, McMichael AJ, dos Santos SI. Heterogeneity of breast cancer risk within the South Asian female population in England: a population-based case–control study of first-generation migrants. Br J Cancer. 2004;90(1):160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Opdahl S, Nilsen TI, Romundstad PR, Vanky E, Carlsen SM, Vatten LJ. Association of size at birth with adolescent hormone levels, body size and age at menarche: relevance for breast cancer risk. Br J Cancer. 2008;99(1):201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. John EM, Phipps AI, Sangaramoorthy M. Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area Breast Cancer Study. Springerplus. 2013;2(1):239.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moorman PG, Terry PD. Consumption of dairy products and the risk of breast cancer: a review of the literature. Am J Clin Nutr. 2004;80(1):5–14.

    CAS  PubMed  Google Scholar 

  10. Yaw YH, Shariff ZM, Kandiah M, Weay YH, Saibul N, Sariman S, et al. Diet and physical activity in relation to weight change among breast cancer patients. Asian Pac J Cancer Prev. 2014;15(1):39–44.

    Article  PubMed  Google Scholar 

  11. Sangrajrang S, Chaiwerawattana A, Ploysawang P, Nooklang K, Jamsri P, Somharnwong S. Obesity, diet and physical inactivity and risk of breast cancer in Thai women. Asian Pac J Cancer Prev. 2013;14(11):7023–7.

    Article  PubMed  Google Scholar 

  12. Sjalander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, et al. p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis. 1996;17(6):1313–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lauwen MM, Zwaveling S, de Quartel L, Ferreira Mota SC, Grashorn JA, Melief CJ, et al. Self-tolerance does not restrict the CD4+ T-helper response against the p53 tumor antigen. Cancer Res. 2008;68(3):893–900.

    Article  CAS  PubMed  Google Scholar 

  14. Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2009;379(4):1027–32. Epub 2009/01/15.

    Article  CAS  PubMed  Google Scholar 

  15. Nischalke HD, Coenen M, Berger C, Aldenhoff K, Muller T, Berg T, et al. The toll-like receptor 2 (TLR2) -196 to −174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer. 2012;130(6):1470–5.

    Article  CAS  PubMed  Google Scholar 

  16. Mandal RK, George GP, Mittal RD. Association of Toll-like receptor (TLR) 2, 3 and 9 genes polymorphism with prostate cancer risk in North Indian population. Mol Biol Rep. 2012;39(7):7263–9.

    Article  CAS  PubMed  Google Scholar 

  17. Menendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, Resnick MA. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet. 2011;7(3):e1001360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu L, Yuan H, Jiang T, Wang R, Ma H, Zhang S. Association of TLR2 and TLR4 polymorphisms with risk of cancer: a meta-analysis. PLoS One. 2013;8(12):e82858.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sjalander A, Birgander R, Rannug A, Alexandrie AK, Tornling G, Beckman G. Association between the p21 codon 31 A1 (arg) allele and lung cancer. Hum Hered. 1996;46(4):221–5.

    Article  CAS  PubMed  Google Scholar 

  20. Franekova M, Zubor P, Stanclova A, Dussan CA, Bohusova T, Galo S, et al. Association of p53 polymorphisms with breast cancer: a case–control study in Slovak population. Neoplasma. 2007;54(2):155–61.

    CAS  PubMed  Google Scholar 

  21. Frank AK, Leu JI, Zhou Y, Devarajan K, Nedelko T, Klein-Szanto A, et al. The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol. 2011;31(6):1201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW, et al. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol. 2011;187(12):6428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li S, Wang L, Berman M, Kong YY, Dorf ME. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity. 2011;35(3):426–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Theodoropoulos GE, Saridakis V, Karantanos T, Michalopoulos NV, Zagouri F, Kontogianni P, et al. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast. 2012;21(4):534–8.

    Article  PubMed  Google Scholar 

  25. de Oliveira MS, Santos MC, de Almeida PC, Panobianco MS, Fernandes AF. Evaluation of an educational handbook as a knowledge-acquisition strategy for mastectomized women. Rev Lat Am Enfermagem. 2012;20(4):668–76.

    Article  PubMed  Google Scholar 

  26. Singh K, Singh VK, Agrawal NK, Gupta SK, Singh K. Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. Biomed Res Int. 2013;2013:318686.

    PubMed  PubMed Central  Google Scholar 

  27. Srivastava K, Srivastava A, Kumar A, Mittal B. Significant association between toll-like receptor gene polymorphisms and gallbladder cancer. Liver Int. 2010;30(7):1067–72.

    Article  CAS  PubMed  Google Scholar 

  28. Shatz M, Menendez D, Resnick MA. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res. 2012;72(16):3948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jordan JJ, Menendez D, Inga A, Noureddine M, Bell DA, Resnick MA. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet. 2008;4(6):e1000104.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malakar M, Devi KR, Phukan RK, Kaur T, Deka M, Puia L, et al. p53 codon 72 polymorphism interactions with dietary and tobacco related habits and risk of stomach cancer in Mizoram. India Asian Pac J Cancer Prev. 2014;15(2):717–23.

    Article  PubMed  Google Scholar 

  31. Noma C, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S. Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in Japanese women. Cancer Lett. 2004;210(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  32. Singh V, Rastogi N, Mathur N, Singh K, Singh MP. Association of polymorphism in MDM-2 and p53 genes with breast cancer risk in Indian women. Ann Epidemiol. 2008;18(1):48–57.

    Article  PubMed  Google Scholar 

  33. Weihrauch M, Bader M, Lehnert G, Wittekind C, Tannapfel A, Wrbitzky R. Carcinogen-specific mutation pattern in the p53 tumour suppressor gene in UV radiation-induced basal cell carcinoma. Int Arch Occup Environ Health. 2002;75(4):272–6.

    Article  CAS  PubMed  Google Scholar 

  34. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, et al. P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28(3):709–15.

    Article  PubMed  Google Scholar 

  35. Kalemi TG, Lambropoulos AF, Gueorguiev M, Chrisafi S, Papazisis KT, Kotsis A. The association of p53 mutations and p53 codon 72, Her 2 codon 655 and MTHFR C677T polymorphisms with breast cancer in Northern Greece. Cancer Lett. 2005;222(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  36. Damin AP, Frazzon AP, Damin DC, Roehe A, Hermes V, Zettler C, et al. Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev. 2006;30(6):523–9.

    Article  CAS  PubMed  Google Scholar 

  37. Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(1):127–30.

    CAS  PubMed  Google Scholar 

  38. Suspitsin EN, Buslov KG, Grigoriev MY, Ishutkina JG, Ulibina JM, Gorodinskaya VM, et al. Evidence against involvement of p53 polymorphism in breast cancer predisposition. Int J Cancer. 2003;103(3):431–3.

    Article  CAS  PubMed  Google Scholar 

  39. Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, Mosbah A, Said S, et al. No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann N Y Acad Sci. 2003;1010:764–70.

    Article  CAS  PubMed  Google Scholar 

  40. Wang-Gohrke S, Rebbeck TR, Besenfelder W, Kreienberg R, Runnebaum IB. p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. Anticancer Res. 1998;18(3B):2095–9.

    CAS  PubMed  Google Scholar 

  41. Huang E, West M, Nevins JR. Gene expression profiling for prediction of clinical characteristics of breast cancer. Recent Prog Horm Res. 2003;58:55–73.

    Article  CAS  PubMed  Google Scholar 

  42. Proestling K, Hebar A, Pruckner N, Marton E, Vinatzer U, Schreiber M. The Pro allele of the p53 codon 72 polymorphism is associated with decreased intratumoral expression of BAX and p21, and increased breast cancer risk. PLoS One. 2012;7(10):e47325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65(12):5009–14.

    Article  CAS  PubMed  Google Scholar 

  44. Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10(10):2058–66.

    Article  CAS  PubMed  Google Scholar 

  45. Matijevic T, Pavelic J. Toll-like receptors: cost or benefit for cancer? Curr Pharm Des. 2010;16(9):1081–90. Epub 2009/12/25.

    Article  CAS  PubMed  Google Scholar 

  46. Galli R, Starace D, Busa R, Angelini DF, Paone A, De Cesaris P, et al. TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol. 2010;184(12):6658–69. Epub 2010/05/21.

    Article  CAS  PubMed  Google Scholar 

  47. Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, et al. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. 2007;67(9):4346–52. Epub 2007/05/08.

    Article  CAS  PubMed  Google Scholar 

  48. Khvalevsky E, Rivkin L, Rachmilewitz J, Galun E, Giladi H. TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. J Cell Biochem. 2007;100(5):1301–12. Epub 2007/01/24.

    Article  CAS  PubMed  Google Scholar 

  49. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44(11):2850–9. Epub 2007/03/03.

    Article  CAS  PubMed  Google Scholar 

  50. Pandey S, Mittal RD, Srivastava M, Srivastava K, Singh S, Srivastava S, et al. Impact of Toll-like receptors [TLR] 2 (-196 to -174 del) and TLR 4 (Asp299Gly, Thr399Ile) in cervical cancer susceptibility in North Indian women. Gynecol Oncol. 2009;114(3):501–5.

    Article  CAS  PubMed  Google Scholar 

  51. Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007;8(5):422–8.

    Article  CAS  PubMed  Google Scholar 

  52. Berzsenyi MD, Roberts SK, Preiss S, Woollard DJ, Beard MR, Skinner NA, et al. Hepatic TLR2 & TLR4 expression correlates with hepatic inflammation and TNF-alpha in HCV & HCV/HIV infection. J Viral Hepat. 2011;18(12):852–60.

    Article  CAS  PubMed  Google Scholar 

  53. Xiang L, Zheng W, Kong B. Detection of PAX8 and p53 is beneficial in recognizing metastatic carcinomas in pelvic washings, especially in cases with suspicious cytology. Gynecol Oncol. 2012;127(3):595–600.

    Article  CAS  PubMed  Google Scholar 

  54. Jegga AG, Inga A, Menendez D, Aronow BJ, Resnick MA. Functional evolution of the p53 regulatory network through its target response elements. Proc Natl Acad Sci U S A. 2008;105(3):944–9. Epub 2008/01/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Indian Council of Medical Research (ICMR), India. We would like to thank all study participants for their cooperation. We are grateful to the editorial board and esteemed referees of the journal ‘Tumor Biology’ for their critical comments to review the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwar Narain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K.R., Chenkual, S., Majumdar, G. et al. TLR2∆22 (-196-174) significantly increases the risk of breast cancer in females carrying proline allele at codon 72 of TP53 gene: a case–control study from four ethnic groups of North Eastern region of India. Tumor Biol. 36, 9995–10002 (2015). https://doi.org/10.1007/s13277-015-3795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3795-2

Keywords

Navigation