Tumor Biology

, Volume 37, Issue 1, pp 253–262 | Cite as

ITGA2B and ITGA8 are predictive of prognosis in clear cell renal cell carcinoma patients

  • Xiaolin Lu
  • Fangning Wan
  • Hailiang Zhang
  • Guohai Shi
  • Dingwei Ye
Original Article

Abstract

Integrins play an important role in cancer growth and metastasis. This study aimed at determining the predictive ability of integrins and associated genes identified through molecular network in clear cell renal cell carcinoma. A total of 525 patients with ccRCC from The Cancer Genome Atlas (TCGA) cohorts were collected in this study. The expression profile of integrins and related genes were obtained from the TCGA RNAseq database. Clinicopathological characteristics, including age, gender, tumor size, tumor node metastasis (TNM), tumor grade, stage, laterality, and overall survival were collected. Cox proportional hazards regression model as well as Kaplan–Meier curve were used to assess the relative factors. Genes of integrin family that showed certain correlations with overall survival (OS) were further validated in the Fudan University Shanghai Cancer Center (FUSCC) cohort. In the TCGA cohort, after Cox proportional hazards analysis, ITGA2B (hazards ratio (HR) = 1.232, 95 % CI 1.097 to 1.383) and ITGA8 (HR = 0.804, 95 % CI 0.696 to 0.930) were shown predictive of ccRCC prognosis. Low ITGA8 expression was associated with poor prognosis for OS (log-rank test, p < 0.0001), while high level of ITGA2B expression was correlated with poor prognosis for OS (log-rank test, p < 0.0001). This finding was validated in FUSCC cohort (log-rank test, all p < 0.05). As a result, low ITGA8 expression was associated with poor prognosis for OS (log-rank test, p = 0.0053), while high level of ITGA2B expression was correlated with poor prognosis for OS (log-rank test, p < 0.0001). Plus, low ITGA8 expression was associated with poor prognosis for disease-free survival (DFS) in the TCGA cohort (log-rank test, p < 0.0001). In the gene cluster network analysis, GIT1 and SHC1 associated with ITGA2B and ITGA8 were identified as independent predictive factors of overall survival of ccRCC. ITGA2B, ITGA8, GIT1, and SHC1 were identified as independent prognostic factors of overall survival of ccRCC. This method may act as a tool to reveal more prognostic-associated genes in ccRCC.

Keywords

Integrin Prognosis Clear cell renal cell carcinoma ITGA2B ITGA8 GIT1 SHC1 

Supplementary material

13277_2015_3792_MOESM1_ESM.docx (46 kb)
ESM 1 (DOCX 45 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Liang L, Li L, Zeng J, Gao Y, Chen YL, Wang ZQ, et al. Inhibitory effect of silibinin on EGFR signal-induced renal cell carcinoma progression via suppression of the EGFR/MMP-9 signaling pathway. Oncol Rep. 2012;28:999–1005.PubMedGoogle Scholar
  3. 3.
    Ficarra V, Galfano A, Novara G, Iafrate M, Brunelli M, Secco S, et al. Risk stratification and prognostication of renal cell carcinoma. World J Urol. 2008;26:115–25.CrossRefPubMedGoogle Scholar
  4. 4.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol. 2002;4:E65–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775:163–80.PubMedGoogle Scholar
  8. 8.
    Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. Alpha (v) beta (6) integrin-a marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50:1371–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Elayadi AN, Samli KN, Prudkin L, Liu YH, Bian A, Xie XJ, et al. A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res. 2007;67:5889–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Goldberg I, Davidson B, Reich R, Gotlieb WH, Ben-Baruch G, Bryne M, et al. Alphav integrin expression is a novel marker of poor prognosis in advanced-stage ovarian carcinoma. Clin Cancer Res. 2001;7:4073–9.PubMedGoogle Scholar
  11. 11.
    Kageshita T, Hamby CV, Hirai S, Kimura T, Ono T, Ferrone S. Alpha (v) beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol Immunother. 2000;49:314–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, et al. Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Heino J, Pyrhonen S. Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res. 2004;14:29–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Schittenhelm J, Schwab EI, Sperveslage J, Tatagiba M, Meyermann R, Fend F, et al. Longitudinal expression analysis of alphav integrins in human gliomas reveals upregulation of integrin alphavbeta3 as a negative prognostic factor. J Neuropathol Exp Neurol. 2013;72:194–210.CrossRefPubMedGoogle Scholar
  15. 15.
    Vellon L, Menendez JA, Lupu R. Alphavbeta3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene. 2005;24:3759–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin alphanvbeta6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol R Coll Radiol. 2008;20:61–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang Y-Z, Yu K-D, Zuo W-J, Peng W-T, Shao Z-M. Gata3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer. 2014;120:1329–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang YM, Dai BL, Zheng L, Zhan YZ, Zhang J, Smith WW, et al. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation. Cell Death Dis. 2012;3:e406.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33:405–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Tchaicha JH, Mobley AK, Hossain MG, Aldape KD, McCarty JH. A mosaic mouse model of astrocytoma identifies alphavbeta8 integrin as a negative regulator of tumor angiogenesis. Oncogene. 2010;29:4460–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zutter MM. Integrin-mediated adhesion: tipping the balance between chemosensitivity and chemoresistance. Adv Exp Med Biol. 2007;608:87–100.CrossRefPubMedGoogle Scholar
  23. 23.
    Mikkelsen T, Brodie C, Finniss S, Berens ME, Rennert JL, Nelson K, et al. Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer. 2009;124:2719–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Albert JM, Cao C, Ling G, Leavitt L, Hallahan DE, Bo L. Integrin alpha (v) beta (3) antagonist cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol. 2006;65:1536–43.CrossRefGoogle Scholar
  25. 25.
    Rivera J, Lozano ML, Navarro-Nunez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94:700–11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol. 2010;30:2362–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for gp iib/iiia and alphavbeta3 integrins in mda-mb-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett. 2014;344:62–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Marek I, Volkert G, Jahn A, Fahlbusch F, Zurn C, Ozcan Z, et al. Lack of alpha8 integrin leads to morphological changes in renal mesangial cells, but not in vascular smooth muscle cells. BMC Cell Biol. 2010;11:102.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hartner A, Menendez-Castro C, Cordasic N, Marek I, Volkert G, Klanke B, et al. Tubulointerstitial de novo expression of the alpha8 integrin chain in a rodent model of renal fibrosis—a potential target for anti-fibrotic therapy? PLoS One. 2012;7:e48362.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet. 2014;94:288–94.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schlenker O, Rittinger K. Structures of dimeric GIT1 and trimeric beta-pix and implications for GIT-PIX complex assembly. J Mol Biol. 2009;386:280–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Hajdo-Milasinovic A, van der Kammen RA, Moneva Z, Collard JG. Rac3 inhibits adhesion and differentiation of neuronal cells by modifying GIT1 downstream signaling. J Cell Sci. 2009;122:2127–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Schmalzigaug R, Garron ML, Roseman JT, Xing Y, Davidson CE, Arold ST, et al. GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cell Signal. 2007;19:1733–44.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4:e6146.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Peng H, Dara L, Li TW, Zheng Y, Yang H, Tomasi ML, et al. MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology. 2013;57:2299–313.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Majumder S, Sowden MP, Gerber SA, Thomas T, Christie CK, Mohan A, et al. G-protein-coupled receptor-2-interacting protein-1 is required for endothelial cell directional migration and tumor angiogenesis via cortactin-dependent lamellipodia formation. Arterioscler Thromb Vasc Biol. 2014;34:419–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene. 2014;33:4496–507.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang WC, Chan SH, Jang TH, Chang JW, Ko YC, Yen TC, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res. 2014;74:751–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Ravichandran KS. Signaling via Shc family adapter proteins. Oncogene. 2001;20:6322–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Veeramani S, Igawa T, Yuan TC, Lin FF, Lee MS, Lin JS, et al. Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells. Oncogene. 2005;24:7203–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Jackson JG, Yoneda T, Clark GM, Yee D. Elevated levels of p66 Shc are found in breast cancer cell lines and primary tumors with high metastatic potential. Clin Cancer Res. 2000;6:1135–9.PubMedGoogle Scholar
  42. 42.
    Rajendran M, Thomes P, Zhang L, Veeramani S, Lin MF. p66Shc—a longevity redox protein in human prostate cancer progression and metastasis: p66Shc in cancer progression and metastasis. Cancer Metastasis Rev. 2010;29:207–22.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xiaolin Lu
    • 1
    • 2
  • Fangning Wan
    • 1
    • 2
  • Hailiang Zhang
    • 1
    • 2
  • Guohai Shi
    • 1
    • 2
  • Dingwei Ye
    • 1
    • 2
  1. 1.Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations