Tumor Biology

, Volume 37, Issue 1, pp 1173–1182 | Cite as

Expression profiling of angiogenesis-related genes in brain metastases of lung cancer and melanoma

  • Aysegül Ilhan-Mutlu
  • Christian Siehs
  • Anna Sophie Berghoff
  • Gerda Ricken
  • Georg Widhalm
  • Ludwig Wagner
  • Matthias Preusser
Original Article


Brain metastases (BM) are the most common brain tumors of adults and are associated with fatal prognosis. Formation of new blood vessels, named angiogenesis, was proposed to be the main hallmark of the growth of BM. Previous preclinical evidence revealed that angiogenic blockage might be considered for treatment; however, there were varying responses. In this study, we aimed to characterize the expression pattern of angiogenesis-related genes in BM of lung cancer and melanoma, which might be of importance for the different responses against anti-angiogenic treatment. Fifteen snap-frozen tissues obtained from BM of non-small cell lung cancer (NSCLC), small-cell lung cancer (SCLC), and melanoma patients were analyzed for angiogenesis-related genes using a commercially available gene expression kit. Epilepsy tissue was used as control. Expression values were analyzed using hierarchical clustering investigating relative fold changes and mapping to Omicsnet protein interaction network. CXCL10, CEACAM1, PECAM1, KIT, COL4A2, COL1A1, and HSPG2 genes were more than 50-fold up-regulated in all diagnosis groups when compared to control, whereas genes such as ANGPT4, PDGFRB, and SERPINF1 were down-regulated only in SCLC and melanoma groups, respectively. Using hierarchical clustering, 12 out of 15 cases were allocated to the correct histological primary tumor type. We identified genes with consistent up-regulation in BM of lung cancer and melanoma and other genes with differential expression across BM of these tumor types. Our data may be of relevance for targeted therapy or prophylaxis of BM using anti-angiogenic agents.


Brain metastases Angiogenesis Non-small cell lung cancer Small-cell lung cancer Melanoma Omicsnet 


Conflicts of interest



  1. 1.
    Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R, et al. Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol. 2012;123:205–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Kienast Y, Winkler F. Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther. 2010;10:1763–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Gaspar LE, Mehta MP, Patchell RA, Burri SH, Robinson PD, Morris RE, et al. The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol. 2010;96:17–32.CrossRefGoogle Scholar
  4. 4.
    Kalkanis SN, Kondziolka D, Gaspar LE, Burri SH, Asher AL, Cobbs CS, et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol. 2010;96:33–43.CrossRefGoogle Scholar
  5. 5.
    Linskey ME, Andrews DW, Asher AL, Burri SH, Kondziolka D, Robinson PD, et al. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol. 2010;96:45–68.CrossRefGoogle Scholar
  6. 6.
    Mehta MP, Paleologos NA, Mikkelsen T, Robinson PD, Ammirati M, Andrews DW, et al. The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-oncol. 2009;96:71–83.CrossRefGoogle Scholar
  7. 7.
    Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Massard C, Zonierek J, Gross-Goupil M, Fizazi K, Szczylik C, Escudier B. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol. 2010;21:1027–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Soria JC, Mauguen A, Reck M, Sandler AB, Saijo N, Johnson DH, et al. Systematic review and meta-analysis of randomised, phase ii/iii trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2013;24:20–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16:116–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Indraccolo S, Stievano L, Minuzzo S, Tosello V, Esposito G, Piovan E, et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc Natl Acad Sci U S A. 2006;103:4216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 2006;98:316–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Udagawa T, Fernandez A, Achilles EG, Folkman J, D’Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J. 2002;16:1361–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, et al. Differential role of angiogenesis and tumor cell proliferation in brain metastases according to primary tumor type: analysis of 639 cases. Neuropathol Appl Neurobiol. 2014Google Scholar
  16. 16.
    Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, et al. Invasion patterns in brain metastases of solid cancers. Neuro-Oncology. 2013;15:1664–72.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berghoff AS, Bartsch R, Wohrer A, Streubel B, Birner P, Kros JM, et al. Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues. Acta Neuropathol. 2014Google Scholar
  18. 18.
    Berghoff AS, Ilhan-Mutlu A, Wohrer A, Hackl M, Widhalm G, Hainfellner JA, et al. Prognostic significance of ki67 proliferation index, hif1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases. Strahlenther Onkol. 2014;190:676–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(−delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Bernthaler A, Muhlberger I, Fechete R, Perco P, Lukas A, Mayer B. A dependency graph approach for the analysis of differential gene expression profiles. Mol BioSyst. 2009;5:1720–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Fechete RHA, Söllner J, Perco P, Lukas A, Mayer B. Using information content for expanding human protein coding gene interaction networks. J Comp Sci Syst Biol. 2013;6:073–82.Google Scholar
  22. 22.
    Siehs C. Simulation in metabolic networks. TU Vienna: Faculty of Bioinformatics; 2015.Google Scholar
  23. 23.
    Prim RC. Shortest connection networks and some generalisations. Bell Syst Tech J. 1957;36:1389–401.CrossRefGoogle Scholar
  24. 24.
    Kruskal J. On the shortest spanning subtree and the traveling salesman problem. Proc Am Math Soc. 1956;7:48–50.CrossRefGoogle Scholar
  25. 25.
    Preusser M, Berghoff AS, Schadendorf D, Lin NU, Stupp R. Brain metastasis: opportunity for drug development? Curr Opin Neurol. 2012;25:786–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase ii trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27:740–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A, et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res. 2004;10:6222–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Gerstel D, Wegwitz F, Jannasch K, Ludewig P, Scheike K, Alves F, et al. Ceacam1 creates a pro-angiogenic tumor microenvironment that supports tumor vessel maturation. Oncogene. 2011;30:4275–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Cao G, O’Brien CD, Zhou Z, Sanders SM, Greenbaum JN, Makrigiannakis A, et al. Involvement of human pecam-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol. 2002;282:C1181–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng H, Fu G, Dai T, Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/cxcr4 via pi3k/akt/enos signal transduction pathway. J Cardiovasc Pharmacol. 2007;50:274–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6:3341–51.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Pan S, An P, Zhang R, He X, Yin G, Min W. Etk/bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol. 2002;22:7512–23.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hwang-Bo J, Yoo KH, Park JH, Jeong HS, Chung IS. Recombinant canstatin inhibits angiopoietin-1-induced angiogenesis and lymphangiogenesis. Int J Cancer. 2012;131:298–309.CrossRefPubMedGoogle Scholar
  36. 36.
    Harris A, Harris H, Hollingsworth MA. Complete suppression of tumor formation by high levels of basement membrane collagen. Mol Cancer Res. 2007;5:1241–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, et al. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res. 2009;15:6763–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Chappell JC, Mouillesseaux KP, Bautch VL. Flt-1 (vascular endothelial growth factor receptor-1) is essential for the vascular endothelial growth factor-notch feedback loop during angiogenesis. Arterioscler Thromb Vasc Biol. 2013;33:1952–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sipos F, Galamb O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J Gastroenterol. 2012;18:601–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Denlinger CE, Ikonomidis JS, Reed CE, Spinale FG. Epithelial to mesenchymal transition: the doorway to metastasis in human lung cancers. J Thorac Cardiovasc Surg. 2010;140:505–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee HJ, Cho CH, Hwang SJ, Choi HH, Kim KT, Ahn SY, et al. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 2004;18:1200–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Investig. 2007;87:1077–91.CrossRefPubMedGoogle Scholar
  43. 43.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.CrossRefPubMedGoogle Scholar
  44. 44.
    Alcantara MB, Nemazannikova N, Elahy M, Dass CR. Pigment epithelium-derived factor upregulates collagen i and downregulates matrix metalloproteinase 2 in osteosarcoma cells, and colocalises to collagen i and heat shock protein 47 in fetal and adult bone. J Pharm Pharmacol. 2014;66:1586–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Sounni NE, Janssen M, Foidart JM, Noel A. Membrane type-1 matrix metalloproteinase and timp-2 in tumor angiogenesis. Matrix Biol. 2003;22:55–61.CrossRefPubMedGoogle Scholar
  46. 46.
    Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K. Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem. 1997;272:556–62.CrossRefPubMedGoogle Scholar
  47. 47.
    Orgaz JL, Sanz-Moreno V. Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res. 2013;26:39–57.CrossRefPubMedGoogle Scholar
  48. 48.
    Ilhan-Mutlu A, Wohrer A, Berghoff AS, Widhalm G, Marosi C, Wagner L, et al. Comparison of microrna expression levels between initial and recurrent glioblastoma specimens. J Neuro-oncol. 2013;112:347–54.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Aysegül Ilhan-Mutlu
    • 1
    • 6
  • Christian Siehs
    • 2
  • Anna Sophie Berghoff
    • 1
    • 6
  • Gerda Ricken
    • 3
  • Georg Widhalm
    • 4
    • 6
  • Ludwig Wagner
    • 5
    • 6
  • Matthias Preusser
    • 1
    • 6
    • 7
  1. 1.Department of Medicine 1Medical University of ViennaViennaAustria
  2. 2.Department of Biomedical EngineeringUniversity of Applied Sciences Technikum WienViennaAustria
  3. 3.Institute for NeurologyMedical University of ViennaViennaAustria
  4. 4.Department of Neuro-SurgeryMedical University of ViennaViennaAustria
  5. 5.Department of Medicine IIIMedical University of ViennaViennaAustria
  6. 6.Central Nervous System Tumour UnitComprehensive Cancer Center ViennaViennaAustria
  7. 7.Department of Medicine I and Comprehensive Cancer Center, Central Nervous System Tumours Unit (CCC-CNS)Medical University of ViennaViennaAustria

Personalised recommendations