Advertisement

Tumor Biology

, Volume 36, Issue 8, pp 5759–5762 | Cite as

Metabolic reprogramming as a continuous changing behavior of tumor cells

  • Silvia Peppicelli
  • Francesca Bianchini
  • Lido Calorini
Commentary

Abstract

Malignant cells resist microenvironment stress and migrate into surrounding tissues in order to divide with the need to adapt their metabolic program. These changes, often strengthened by the tremendous liaison between hypoxia, low glucose, and acidosis, are not yet completely understood. The aim of this perspective is to re-organize a possible comprehensive scenario useful to identify the metabolism occurring in various tumor cell subpopulations endowed with different capabilities.

Keywords

Cancer metabolism Acidic microenvironment Hypoxia 

Notes

Acknowledgements

Work is supported by grants from Istituto Toscano Tumori and Ente Cassa di Risparmio di Firenze.

Conflicts of interest

None

References

  1. 1.
    Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.CrossRefPubMedGoogle Scholar
  3. 3.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345–50.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weinhouse S. Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture. Cancer Res. 1972;32:2007–16.PubMedGoogle Scholar
  5. 5.
    Vélez J, Hail Jr N, Konopleva M, Zeng Z, Kojima K, Samudio I, et al. Mitochondrial uncoupling and the reprograming of intermediary metabolism in leukemia cells. Front Oncol. 2013;3:67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9:1221–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Spivak JL. The anaemia of cancer: death by a thousand cuts. Nat Rev Cancer. 2005;5:543–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.CrossRefPubMedGoogle Scholar
  11. 11.
    Murayama C, Kawaguchi AT, Kamijo A, Naito K, Iwao K, Tsukamoto H, et al. Liposome-encapsulated hemoglobin enhances chemotherapy to suppress metastasis in mice. Artif Organs. 2014;38:656–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol. 2003;23:359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumor regression. Nature. 2006;441:437–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Peppicelli S, Bianchini F, Calorini L. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 2014;33:823–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Mazzio EA, Boukli N, Rivera N, Soliman KF. Pericellular pH homeostasis is a primary function of the Warburg effect: inversion of metabolic systems to control lactate steady state in tumor cells. Cancer Sci. 2012;103:422–32.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Burd R, Wachsberger PR, Biaglow JE, Wahl ML, Lee I, Leeper DB. Absence of Crabtree effect in human melanoma cells adapted to growth at low pH: reversal by respiratory inhibitors. Cancer Res. 2001;61:5630–5.PubMedGoogle Scholar
  20. 20.
    Semenza GL. Tumor metabolism: cancer cells give and take lactate. J Clin Invest. 2008;118:3835–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 2012;72:5130–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.CrossRefPubMedGoogle Scholar
  23. 23.
    LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992–1003.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Silvia Peppicelli
    • 1
  • Francesca Bianchini
    • 1
  • Lido Calorini
    • 1
  1. 1.Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and OncologyFlorence UniversityFlorenceItaly

Personalised recommendations