Tumor Biology

, Volume 36, Issue 12, pp 9829–9837 | Cite as

Identification of RAB2A and PRDX1 as the potential biomarkers for oral squamous cell carcinoma using mass spectrometry-based comparative proteomic approach

  • Kaushik Kumar Dey
  • Ipsita Pal
  • Rashmi Bharti
  • Goutam Dey
  • B. N. Prashanth Kumar
  • Shashi Rajput
  • Aditya Parekh
  • Sheetal Parida
  • Priyanka Halder
  • Indranil Kulavi
  • Mahitosh Mandal
Research Article


Despite the recent advances in diagnostic and therapeutic strategies, oral squamous cell carcinoma (OSCC) remains a major health burden. Protein biomarker discovery for early detection will help to improve patient survival rate in OSCC. Mass spectrometry-based proteomics has emerged as an excellent approach for detection of protein biomarkers in various types of cancers. In the current study, we have used 4-Plex isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun quantitative proteomic approach to identify proteins that are differentially expressed in cancerous tissues compared to normal tissues. The high-resolution mass spectrometric analysis resulted in identifying 2,074 proteins, among which 288 proteins were differentially expressed. Further, it was noticed that 162 proteins were upregulated, while 125 proteins were downregulated in OSCC-derived cancer tissue samples as compared to the adjacent normal tissues. We identified some of the known molecules which were reported earlier in OSCC such as MMP-9 (8.4-fold), ZNF142 (5.6-fold), and S100A7 (3.5-fold). Apart from this, we have also identified some novel signature proteins which have not been reported earlier in OSCC including ras-related protein Rab-2A isoform, RAB2A (4.6-fold), and peroxiredoxin-1, PRDX1 (2.2-fold). The immunohistochemistry-based validation using tissue microarray slides in OSCC revealed overexpression of the RAB2A and PRDX1 gene in 80 and 68 % of the tested clinical cases, respectively. This study will not only serve as a resource of candidate biomarkers but will contribute towards the existing knowledge on the role of the candidate molecules towards disease progression and therapeutic potential.


iTRAQ Oral squamous cell carcinoma OSCC RAB2A PRDX1 



We thank the Indian Council of Medical Research (3/2/2/207/2013/NCD-III) and the Department of Science and Technology (SR/SO/BB-58/2008) Government of India for financial support.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


Informed consent was obtained from all individual participants included in the study.

Conflicts of interest


Supplementary material

13277_2015_3758_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)
13277_2015_3758_MOESM2_ESM.pdf (546 kb)
ESM 2 (PDF 545 kb)
13277_2015_3758_MOESM3_ESM.pdf (2.5 mb)
ESM 3 (PDF 2,550 kb)


  1. 1.
    Kreeft AM, Tan IB, Leemans CR, Balm AJ. The surgical dilemma in advanced oral and oropharyngeal cancer: how we do it. Clin Otolaryngol. 2011;36(3):260–6. doi: 10.1111/j.1749-4486.2011.02299.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics: Clin Appl. 2015;9(1-2):86–97. doi: 10.1002/prca.201400091.Google Scholar
  3. 3.
    Mangalath U, Aslam SA, Abdul Khadar AH, Francis PG, Mikacha MS, Kalathingal JH. Recent trends in prevention of oral cancer. J Int Soc Prev Community Dent. 2014;4 Suppl 3:S131–8. doi: 10.4103/2231-0762.149018.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Reboiras-Lopez MD, Gandara Rey JM, Garcia-Garcia A. Genetic and molecular alterations associated with oral squamous cell cancer (review). Oncol Rep. 2009;22(6):1277–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Mishra A, Verma V. Oral sex and HPV: population based indications. Indian J Otolaryngol Head Neck Surg. 2015;67 Suppl 1:1–7. doi: 10.1007/s12070-012-0521-x 521.CrossRefPubMedGoogle Scholar
  6. 6.
    Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2008;83(4):489–501. doi: 10.4065/83.4.489.CrossRefPubMedGoogle Scholar
  7. 7.
    Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M. Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis. 2006;27(7):1417–23. doi: 10.1002/elps.200500510.CrossRefPubMedGoogle Scholar
  8. 8.
    Marimuthu A, Chavan S, Sathe G, Sahasrabuddhe NA, Srikanth SM, Renuse S, et al. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. Biochim Biophys Acta. 2013;1834(11):2308–16. doi: 10.1016/j.bbapap.2013.04.029.CrossRefPubMedGoogle Scholar
  9. 9.
    Pawar H, Kashyap MK, Sahasrabuddhe NA, Renuse S, Harsha HC, Kumar P, et al. Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biol Ther. 2011;12(6):510–22. doi: 10.4161/cbt.12.6.16833.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, Nanjappa V, et al. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics. 2015;15(2-3):383–93. doi: 10.1002/pmic.201400338.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Parida S, Parekh A, Dey G, Ghosh SC, Mandal M. Molecular inhibition of prostaglandin E2 with GW627368X: therapeutic potential and preclinical safety assessment in mouse sarcoma model. Cancer Biol Ther. 2015. doi: 10.1080/15384047.2015.1040953.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Franchi A, Santucci M, Masini E, Sardi I, Paglierani M, Gallo O. Expression of matrix metalloproteinase 1, matrix metalloproteinase 2, and matrix metalloproteinase 9 in carcinoma of the head and neck. Cancer. 2002;95(9):1902–10. doi: 10.1002/cncr.10916.CrossRefPubMedGoogle Scholar
  13. 13.
    Miyake N, Katoh O, Hirata S, Kimura S, Watanabe H, Yajin K. Expression of the Kruppel-type zinc finger gene, ZK7, in head and neck squamous cell carcinoma and normal mucosa. Cancer Lett. 2002;185(1):111–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Polachini GM, Sobral LM, Mercante AM, Paes-Leme AF, Xavier FC, Henrique T, et al. Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One. 2012;7(12):e50517. doi: 10.1371/journal.pone.0050517.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaur J, Ralhan R. Differential expression of 70-kDa heat shock-protein in human oral tumorigenesis. Int J Cancer. 1995;63(6):774–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kesting MR, Sudhoff H, Hasler RJ, Nieberler M, Pautke C, Wolff KD, et al. Psoriasin (S100A7) up-regulation in oral squamous cell carcinoma and its relation to clinicopathologic features. Oral Oncol. 2009;45(8):731–6. doi: 10.1016/j.oraloncology.2008.11.012.CrossRefPubMedGoogle Scholar
  17. 17.
    Feher LZ, Pocsay G, Krenacs L, Zvara A, Bagdi E, Pocsay R, et al. Amplification of thymosin beta 10 and AKAP13 genes in metastatic and aggressive papillary thyroid carcinomas. Pathol Oncol Res. 2012;18(2):449–58. doi: 10.1007/s12253-011-9467-7.CrossRefPubMedGoogle Scholar
  18. 18.
    Herold-Mende C, Andl T, Laemmler F, Reisser C, Eichhorn S. Expression and localization profile of tenascin in squamous cell carcinomas of the head and neck. HNO. 1999;47(8):723–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Bagutti C, Speight PM, Watt FM. Comparison of integrin, cadherin, and catenin expression in squamous cell carcinomas of the oral cavity. J Pathol. 1998;186(1):8–16. doi: 10.1002/(SICI)1096-9896(199809)186.CrossRefPubMedGoogle Scholar
  20. 20.
    Chiang WF, Hwang TZ, Hour TC, Wang LH, Chiu CC, Chen HR, et al. Calreticulin, an endoplasmic reticulum-resident protein, is highly expressed and essential for cell proliferation and migration in oral squamous cell carcinoma. Oral Oncol. 2013;49(6):534-–41. doi: 10.1016/j.oraloncology.2013.01.003.CrossRefPubMedGoogle Scholar
  21. 21.
    Gourin CG, Zhi W, Adam BL. Proteomic identification of serum biomarkers for head and neck cancer surveillance. Laryngoscope. 2009;119(7):1291–302. doi: 10.1002/lary.20279.CrossRefPubMedGoogle Scholar
  22. 22.
    Goel R, Muthusamy B, Pandey A, Prasad TS. Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol. 2011;48(1):87–95. doi: 10.1007/s12033-010-9336-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Barbaud A, Simon M, Parache RM, Serre G. Immunohistochemical characterization of the differentiation state of basal cell carcinomas with special interest for infiltrating relapsing tumors. Eur J Dermatol. 1998;8(5):320–4.PubMedGoogle Scholar
  24. 24.
    Suda T, Tsunoda T, Uchida N, Watanabe T, Hasegawa S, Satoh S, et al. Identification of secernin 1 as a novel immunotherapy target for gastric cancer using the expression profiles of cDNA microarray. Cancer Sci. 2006;97(5):411–9. doi: 10.1111/j.1349-7006.2006.00194.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, de Andrade Paula CA, Carneiro CR, Ortiz V, et al. Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013;319(7):967–81. doi: 10.1016/j.yexcr.2013.01.023.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ping Lu Y, Ishiwata T, Asano G. Lumican expression in alpha cells of islets in pancreas and pancreatic cancer cells. J Pathol. 2002;196(3):324–30. doi: 10.1002/path.1037.CrossRefPubMedGoogle Scholar
  27. 27.
    Koninger J, Giese T, di Mola FF, Wente MN, Esposito I, Bachem MG, et al. Pancreatic tumor cells influence the composition of the extracellular matrix. Biochem Biophys Res Commun. 2004;322(3):943–9. doi: 10.1016/j.bbrc.2004.08.008 S0006-291X(04)01735-8.CrossRefPubMedGoogle Scholar
  28. 28.
    Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, et al. Expression of lumican in human breast carcinoma. Cancer Res. 1998;58(7):1348–52.PubMedGoogle Scholar
  29. 29.
    Naito Z, Ishiwata T, Kurban G, Teduka K, Kawamoto Y, Kawahara K, et al. Expression and accumulation of lumican protein in uterine cervical cancer cells at the periphery of cancer nests. Int J Oncol. 2002;20(5):943–8.PubMedGoogle Scholar
  30. 30.
    Sun J, Feng X, Gao S, Xiao Z. microRNA-338-3p functions as a tumor suppressor in human non-small-cell lung carcinoma and targets Ras-related protein 14. Mol Med Rep. 2015;11(2):1400–6. doi: 10.3892/mmr.2014.2880.PubMedGoogle Scholar
  31. 31.
    Yoshida H, Miyachi M, Ouchi K, Kuwahara Y, Tsuchiya K, Iehara T, et al. Identification of COL3A1 and RAB2A as novel translocation partner genes of PLAG1 in lipoblastoma. Genes, Chromosomes Cancer. 2014;53(7):606–11. doi: 10.1002/gcc.22170.CrossRefPubMedGoogle Scholar
  32. 32.
    Nourashrafeddin S, Aarabi M, Modarressi MH, Rahmati M, Nouri M. The evaluation of WBP2NL-related genes expression in breast cancer. Pathol Oncol Res. 2014. doi: 10.1007/s12253-014-9820-8.PubMedGoogle Scholar
  33. 33.
    Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28(1):32–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Gong F, Hou G, Liu H, Zhang M. Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma. Med Oncol. 2015;32(2):455. doi: 10.1007/s12032-014-0455-0.CrossRefPubMedGoogle Scholar
  35. 35.
    Yanagawa T, Ishikawa T, Ishii T, Tabuchi K, Iwasa S, Bannai S, et al. Peroxiredoxin I expression in human thyroid tumors. Cancer Lett. 1999;145(1-2):127–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim JH, Bogner PN, Ramnath N, Park Y, Yu J, Park YM. Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin Cancer Res. 2007;13(13):3875–82. doi: 10.1158/1078-0432.CCR-06-2893.CrossRefPubMedGoogle Scholar
  37. 37.
    Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424(6948):561–5. doi: 10.1038/nature01819.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim YJ, Lee WS, Ip C, Chae HZ, Park EM, Park YM. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res. 2006;66(14):7136–42. doi: 10.1158/0008-5472.CAN-05-4446.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Kaushik Kumar Dey
    • 1
  • Ipsita Pal
    • 1
  • Rashmi Bharti
    • 1
  • Goutam Dey
    • 1
  • B. N. Prashanth Kumar
    • 1
  • Shashi Rajput
    • 1
  • Aditya Parekh
    • 1
  • Sheetal Parida
    • 1
  • Priyanka Halder
    • 1
  • Indranil Kulavi
    • 2
  • Mahitosh Mandal
    • 1
  1. 1.School of Medical Science and TechnologyIndian Institute of TechnologyKharagpurIndia
  2. 2.Bankura Sammilani Medical CollegeBankuraIndia

Personalised recommendations