Skip to main content

Advertisement

Log in

Prognostic significance of the tumour-adjacent tissue in head and neck cancers

  • Research Article
  • Published:
Tumor Biology

This article has been updated

Abstract

Even with significant advances in operative skills and adjuvant therapies, the overall survival of patients suffering with head and neck squamous cancers (HNSCC) is unsatisfactory. Accordingly, no clinically useful prognostic biomarkers have been found yet for HNSCC. Many studies analysed the expression of potential markers in tumour tissues compared to adjacent tissues. Nevertheless, due to the sharing of the same microenvironment, adjacent tissues show molecular similarity to tumour tissues. Thus, gene expression patterns of 94 HNSCC tumorous tissues were compared with 31 adjacent tissues and with 10 tonsillectomy specimens of non-cancer individuals. The genes analysed at RNA level using quantitative RT-PCR and correlated with clinico-pathological conditions were as follows: EGF, EGFR, MKI67, BCL2, BAX, FOS, JUN, TP53, VEGF, FLT1, MMP2, MMP9, MT1A and MT2A. The elevated MT2A, BAX, EGF and JUN expression was associated with the influence of tumour cells on the rearrangement of healthy tissues, as well as a significant shift in the BAX/BCL2 ratio. Our investigation also indicated that adjacent tissues play an important role in cancerogenesis by releasing several tumour-supporting factors such as EGF. A gradual increase in the metallothionein expression, from the lowest one in tonsillectomy samples to the highest ones in tumour samples, suggests that MT expression might be tissue reaction to the presence of tumour cells. The results of this study confirmed the significance of metallothionein in tumori-genesis and gave evidences for its use as a potential HNSCC biomarker. Furthermore, this study highlighted the importance of histologically normal tumour-adjacent tissue in prediction of HNSCC progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol. 2005;86(6):347–63. doi:10.1111/j.0959-9673.2005.00447.x.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldberg HI, Lockwood SA, Wyatt SW, Crossett LS. Trends and differentials in mortality from cancers of the oral cavity and pharynx in the United States, 1973–1987. Cancer. 1994;74(2):565–72. doi:10.1002/1097-0142(19940715)74:2<565::aid-cncr2820740206>3.0.co;2-i.

    CAS  PubMed  Google Scholar 

  3. Ghoshal S, Mallick I, Panda N, Sharma SC. Carcinoma of the buccal mucosa: analysis of clinical presentation, outcome and prognostic factors. Oral Oncol. 2006;42(5):533–9. doi:10.1016/j.oraloncology.2005.10.005.

    PubMed  Google Scholar 

  4. Jones KR, Lodgerigal RD, Reddick RL, Tudor GE, Shockley WW. Prognostic factors in the recurrence of stage-I and stage-II squamous-cell cancer of the oral cavity. Arch Otolaryngol Head Neck Surg. 1992;118(5):483–5.

    CAS  PubMed  Google Scholar 

  5. Goldson TM, Han Y, Knight KB, Weiss HL, Resto VA. Clinicopathological predictors of lymphatic metastasis in HNSCC: implications for molecular mechanisms of metastatic disease. J Exp Ther Oncol. 2010;8(3):211–21.

    PubMed  PubMed Central  Google Scholar 

  6. Fernandez AG, Gimenez N, Fraile M, Gonzalez S, Chabrera C, Torras M, et al. Survival and clinicopathological characteristics of breast cancer patient according to different tumour subtypes as determined by hormone receptor and Her2 immunohistochemistry. A single institution survey spanning 1998 to 2010. Breast. 2012;21(3):366–73. doi:10.1016/j.breast.2012.03.004.

    Google Scholar 

  7. Wallner LP, Frencher SK, Hsu JWY, Chao CR, Nichol MB, Loo RK, et al. Changes in serum prostate-specific antigen levels and the identification of prostate cancer in a large managed care population. BJU Int. 2013;111(8):1245–52. doi:10.1111/j.1464-410X.2012.11651.x.

    CAS  PubMed  Google Scholar 

  8. Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, et al. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol. 2014;50(3):168–77. doi:10.1016/j.oraloncology.2013.12.008.

    CAS  PubMed  Google Scholar 

  9. Chandran UR, Dhir R, Ma CQ, Michalopoulos G, Becich M, Gilbertson J. Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer. 2005;5(45). doi:10.1186/1471-2407-5-45.

    PubMed  PubMed Central  Google Scholar 

  10. Joshi A, Cao DL. TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci Landmark. 2010;15:180–94. doi:10.2741/3614.

    CAS  Google Scholar 

  11. Sanz-Pamplona R, Berenguer A, Cordero D, Mollevi DG, Crous-Bou M, Sole X, et al. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol Cancer. 2014;13:46. doi:10.1186/1476-4598-13-46.

    PubMed  PubMed Central  Google Scholar 

  12. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell-death and tissue remodeling during mouse mammary-gland involution. Development. 1992;115(1):49–58.

    CAS  PubMed  Google Scholar 

  13. Le Bitoux MA, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem Cell Biol. 2008;130(6):1079–90. doi:10.1007/s00418-008-0527-3.

    CAS  PubMed  Google Scholar 

  14. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80. doi:10.1002/ijc.23173.

    CAS  PubMed  Google Scholar 

  15. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–66. doi:10.3390/ijms14036044.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato M, Bremner I. Oxygen free-radicals and metallothionein. Free Radic Biol Med. 1993;14(3):325–37. doi:10.1016/0891-5849(93)90029-t.

    CAS  PubMed  Google Scholar 

  17. Sochor J, Hynek D, Krejcova L, Fabrik I, Krizkova S, Gumulec J, et al. Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using brdicka reaction. Int J Electrochem Sci. 2012;7(3):2136–52.

    CAS  Google Scholar 

  18. Ioachim E, Assimakopoulos D, Peschos D, Zissi A, Skevas A, Agnantis NJ. Immunohistochemical expression of metallothionein in benign premalignant and malignant epithelium of the larynx: correlation with p53 and proliferative cell nuclear antigen. Pathol Res Pract. 1999;195(12):809–14.

    CAS  PubMed  Google Scholar 

  19. Dutsch-Wicherek M, Lazar A, Tomaszewska R, Kazmierczak W, Wicherek L. Analysis of metallothionein and vimentin immunoreactivity in pharyngeal squamous cell carcinoma and its microenvironment. Cell Tissue Res. 2013;352(2):341–9. doi:10.1007/s00441-013-1566-1.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M. Metallothionein—Immunohistochemical cancer biomarker: a meta-analysis. Plos One. 2014;9(1). doi:10.1371/journal.pone.0085346.

  21. Inoue K-i, Takano H, Shimada A, Satoh M. Metallothionein as an anti-inflammatory mediator. Mediat Inflamm. 2009. doi:10.1155/2009/101659.

  22. Inoue KI, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, et al. Role of metallothionein in antigen-related airway inflammation. Exp Biol Med. 2005;230(1):75–81.

    CAS  Google Scholar 

  23. Tate DJ, Newsome DA, Oliver PD. Metallothionein shows an age-related decrease in human macular retinal-pigment epithelium. Invest Ophthalmol Vis Sci. 1993;34(7):2348–51.

    PubMed  Google Scholar 

  24. Dutsch-Wicherek M, Popiela TJ, Klimek M, Rudnicka-Sosin L, Wicherek L, Oudinet JP, et al. Metallothionein stroma reaction in tumor adjacent healthy tissue in head and neck squamous cell carcinoma and breast adenocarcinoma. Neuroendocrinol Lett. 2005;26(5):567–74.

    CAS  PubMed  Google Scholar 

  25. Walentowicz-Sadlecka M, Koper A, Krystyna G, Koper K, Basta P, Mach P, et al. The analysis of metallothionein immunoreactivity in stromal fibroblasts and macrophages in cases of uterine cervical carcinoma with respect to both the local and distant spread of the disease. Am J Reprod Immunol. 2013;70(3):253–61. doi:10.1111/aji.12120.

    CAS  PubMed  Google Scholar 

  26. Colella S, Richards KL, Bachinski LL, Baggerly KA, Tsavachidis S, Lang JC, et al. Molecular signatures of metastasis in head and neck cancer. Head Neck J Sci Spec Head Neck. 2008;30(10):1273–83. doi:10.1002/hed.20871.

    Google Scholar 

  27. Wlostowski T. Involvement of metallothionein and copper in cell-proliferation. Biometals. 1993;6(2):71–6. doi:10.1007/bf00140106.

    CAS  PubMed  Google Scholar 

  28. Saadeddin A, Babaei-Jadidi R, Spencer-Dene B, Nateri AS. The links between transcription, beta-catenin/jnk signaling, and carcinogenesis. Mol Cancer Res. 2009;7(8):1189–96. doi:10.1158/1541-7786.mcr-09-0027.

    CAS  PubMed  Google Scholar 

  29. Li W, Wu C-L, Febbo PG, Olumi AF. Stromally expressed c-Jun regulates proliferation of prostate epithelial cells. Am J Pathol. 2007;171(4):1189–98. doi:10.2353/ajpath.2007.070285.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jameson MJ, Beckler AD, Taniguchi LE, Allak A, VanWagner LB, Lee NG, et al. Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther. 2011;10(11):2124–34. doi:10.1158/1535-7163.mct-11-0294.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Buchheit CL, Weigel KJ, Schafer ZT. OPINION cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer. 2014;14(9):632–41. doi:10.1038/nrc3789.

    CAS  PubMed  Google Scholar 

  32. Skvortsov S, Dudas J, Eichberger P, Witsch-Baumgartner M, Loeffler-Ragg J, Pritz C, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer. 2014;110(11):2677–87. doi:10.1038/bjc.2014.221.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Couture C, Raybaud-Diogene H, Tetu B, Bairati I, Murry D, Allard J, et al. p53 and Ki-67 as markers of radioresistance in head and neck carcinoma. Cancer. 2002;94(3):713–22. doi:10.1002/cncr.10232.

    CAS  PubMed  Google Scholar 

  34. Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle. 2013;12(9):1371–84. doi:10.4161/cc.24092.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gallo O, Chiarelli I, Boddi V, Bocciolini C, Bruschini L, Porfirio B. Cumulative prognostic value of p53 mutations and bcl-2 protein expression in head-and-neck cancer treated by radiotherapy. Int J Cancer. 1999;84(6):573–9. doi:10.1002/(sici)1097-0215(19991222)84:6<573::aid-ijc6>3.0.co;2-r.

    CAS  PubMed  Google Scholar 

  36. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A. 1998;95(6):2956–60. doi:10.1073/pnas.95.6.2956.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis R, Chisolm GM, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 2003;10(3):323–34. doi:10.1038/sj.cdd.4401148.

    CAS  PubMed  Google Scholar 

  38. DelBufalo D, Biroccio A, Leonetti C, Zupi G. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J. 1997;11(12):947–53.

    CAS  Google Scholar 

  39. Wick W, Wagner S, Kerkau S, Dichgans J, Tonn JC, Weller M. BCL-2 promotes migration and invasiveness of human glioma cells. FEBS Lett. 1998;440(3):419–24. doi:10.1016/s0014-5793(98)01494-x.

    CAS  PubMed  Google Scholar 

  40. Choi J, Choi K, Benveniste EN, Hong YS, Lee JH, Kim J, et al. Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res. 2005;65(13):5554–60. doi:10.1158/0008-5472.can-04-4570.

    CAS  PubMed  Google Scholar 

  41. Wang F, Arun P, Friedman J, Chen Z, Van Waes C. Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol. 2009;9(4):389–95. doi:10.1016/j.coph.2009.06.005.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu CJ, Chang KW, Lin SC, Cheng HW. Presurgical serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in oral squamous cell carcinoma. Oral Oncol. 2009;45(10):920–5. doi:10.1016/j.oraloncology.2009.04.007.

    CAS  PubMed  Google Scholar 

  43. Yuce I, Bayram A, Cagli S, Canoz O, Bayram S, Guney E. The role of CD44 and matrix metalloproteinase-9 expression in predicting neck metastasis of supraglottic laryngeal carcinoma. Am J Otolaryngol. 2011;32(2):141–6. doi:10.1016/j.amjoto.2010.01.001.

    PubMed  Google Scholar 

  44. Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, et al. Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene. 2009;28(30):2723–37. doi:10.1038/onc.2009.128.

    CAS  PubMed  Google Scholar 

  45. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007;26(10):1459–67. doi:10.1038/sj.onc.1209929.

    CAS  PubMed  Google Scholar 

  46. Thomas GT, Lewis MP, Speight PM. Matrix metalloproteinases and oral cancer. Oral Oncol. 1999;35(3):227–33. doi:10.1016/s1368-8375(99)00004-4.

    CAS  PubMed  Google Scholar 

  47. Bjorklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer. 2005;1755(1):37–69. doi:10.1016/j.bbcan.2005.03.001.

    Google Scholar 

  48. Fullar A, Kovalszky I, Bitsche M, Romani A, Schartinger VH, Sprinzl GM, et al. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp Cell Res. 2012;318(13):1517–27. doi:10.1016/j.yexcr.2012.03.023.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4(1):66–83. doi:10.7150/jca.5112.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther. 2003;10(11):823–32. doi:10.1038/sj.cgt.7700642.

    CAS  PubMed  Google Scholar 

  51. Farina AR, Mackay AR. Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers (Basel). 2014;6(1):240–96. doi:10.3390/cancers6010240.

    Google Scholar 

  52. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–9. doi:10.1016/j.ccr.2009.01.021.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31. doi:10.1016/j.ccr.2009.01.027.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Limbergen EJ, Zabrocki P, Porcu M, Hauben E, Cools J, Nuyts S. FLT1 kinase is a mediator of radioresistance and survival in head and neck squamous cell carcinoma. Acta Oncol. 2014;53(5):637–45. doi:10.3109/0284186x.2013.835493.

    PubMed  Google Scholar 

  55. Ito TK, Ishii G, Chiba H, Ochiai A. The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene. 2007;26(51):7194–203. doi:10.1038/sj.onc.1210535.

    CAS  PubMed  Google Scholar 

  56. Lucas JT, Salimath BP, Slomiany MG, Rosenzweig SA. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 2010;29(31):4449–59. doi:10.1038/onc.2010.185.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Smirnova T, Adomako A, Locker J, Van Rooijen N, Prystowsky MB, Segall JE. In vivo invasion of head and neck squamous cell carcinoma cells does not require macrophages. Am J Pathol. 2011;178(6):2857–65. doi:10.1016/j.ajpath.2011.02.030.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666–72. doi:10.1200/jco2005.04.8306.

    CAS  PubMed  Google Scholar 

  59. Grandis JR, Tweardy DJ. Elevated levels of transforming growth-factor-alpha and epidermal growth-factor receptor messenger-RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53(15):3579–84.

    CAS  PubMed  Google Scholar 

  60. Grandis JR, Tweardy DJ, Melhem MF. Asynchronous modulation of transforming growth factor alpha and epidermal growth factor receptor protein expression in progression of premalignant lesions to head and neck squamous cell carcinoma. Clin Cancer Res. 1998;4(1):13–20.

    Google Scholar 

  61. Ang KK, Berkey BA, Tu XY, Zhang HZ, Katz R, Hammond EH, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62(24):7350–6.

    CAS  PubMed  Google Scholar 

  62. Park BJ, Chiosea SI, Grandis JR. Molecular changes in the multistage pathogenesis of head and neck cancer. Cancer Biomark. 2011;9(1–6):325–39. doi:10.3233/cbm-2011-0163.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Health of the Czech Republic IGA MZ NT 14337-3/2013.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Masarik.

Additional information

Martina Raudenska and Marketa Sztalmachova contributed equally to this work.

Publisher’s Note: An erratum to this article is available online at https://doi.org/10.3233/TUB-219001

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raudenska, M., Sztalmachova, M., Gumulec, J. et al. Prognostic significance of the tumour-adjacent tissue in head and neck cancers. Tumor Biol. 36, 9929–9939 (2015). https://doi.org/10.1007/s13277-015-3755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3755-x

Keywords

Navigation