Tumor Biology

, Volume 36, Issue 12, pp 9753–9761 | Cite as

Speckle-type POZ protein is negatively associated with malignancies and inhibits cell proliferation and migration in liver cancer

  • Yuping Huang
  • Ning Tan
  • Deshui Jia
  • Ying Jing
  • Qifeng Wang
  • Zhe Li
  • Jiwei Zhang
  • Li Liu
  • Jinjun Li
  • Zhiao Chen
  • Xianghuo He
Research Article


Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor that is frequently mutated in human cancers. Our previous findings have indicated that SPOP is mutated and functions as a novel tumor suppressor in hepatoblastoma (HB). However, the biological roles and clinical significance of this SPOP in hepatocellular carcinoma (HCC) remain unknown. In this study, we found that the expression level of SPOP was downregulated in HCC primary tumors by quantitative real-time PCR and the protein level of SPOP was also reduced in 72 pairs of HCC tissue microarrays by immunohistochemical analyses. Moreover, SPOP expression was observed to negatively correlate with the tumor grade and intrahepatic metastasis of HCC patients. Furthermore, we revealed that SPOP not only inhibits cell proliferation but also inhibits the motility of liver cancer cells. Finally, we discovered that one of the mechanisms through which SPOP inhibits liver cancer cell migration involves the disruption of ZEB2 expression and the associated epithelial-mesenchymal transition program. Together, our findings emphasize the critical role of SPOP in the regulation of proliferation and migration in liver cancer.


SPOP Tumor suppressor Epithelial-mesenchymal transition Liver cancer 



We are grateful for Dr T. Didier’s gifts of the pWPXL, psPAX2, and pMD2.G lenti-virus plasmids. This work was supported by grants from Shanghai Municipal Health Bureau (XBR2011039), Shanghai Natural Science Fund for Youth Scholars (12ZR1449900), and National Natural Science Foundation of China (81201538).

Conflicts of interest


Supplementary material

13277_2015_3753_MOESM1_ESM.docx (1.8 mb)
ESM. 1 (DOCX 1874 kb)


  1. 1.
    E-S HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  3. 3.
    Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.CrossRefPubMedGoogle Scholar
  4. 4.
    Nagai Y, Kojima T, Muro Y, Hachiya T, Nishizawa Y, Wakabayashi T, et al. Identification of a novel nuclear speckle-type protein, SPOP. FEBS Lett. 1997;418:23–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Aravind L, Eugene VK. Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol. 1999;285:1353–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, et al. Stable x chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A. 2005;102:7635–40.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009;36:39–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mains P, Kemphues K, Sprunger S, Sulston I, Wood W. Mutations affecting the meiotic and mitotic divisions of the early caenorhabditis elegans embryo. Genetics. 1990;126:593–605.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pintard LWJ, Willems A, Johnson JL, Srayko M, Kurz T, Glaser S, et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature. 2003;425:311–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem. 2006;281:12664–72.CrossRefPubMedGoogle Scholar
  11. 11.
    La M, Kim K, Park J, Won J, Lee JH, Fu YM, et al. Daxx-mediated transcriptional repression of MMP1 gene is reversed by SPOP. Biochem Biophys Res Commun. 2004;320:760–5.CrossRefPubMedGoogle Scholar
  12. 12.
    An J, Wang C, Deng Y, Yu L, Huang H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 2014;6:657–69.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li C, Ao J, Fu J, Lee DF, Xu J, Lonard D, et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene. 2011;30:4350–64.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110:6997–7002.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T, et al. Spop suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 2014;33:75.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li G, Ci W, Karmakar S, Chen K, Dhar R, Fan Z, et al. SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell. 2014;25:455–68.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470:214–20.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ, et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 2012;44:1310–5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466:869–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jia D, Dong R, Jing Y, Xu D, Wang Q, Chen L, et al. Exome sequencing of hepatoblastoma reveals novel mutations and cancer genes in the wnt pathway and ubiquitin ligase complex. Hepatology. 2014;60:1686–96.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Z, Lu X, Wang Z, Jin G, Wang Q, Chen D, et al. Co-expression of PKM2 and TRIM35 predicts survival and recurrence in hepatocellular carcinoma. Oncotarget. 2015;6:2538–48.PubMedGoogle Scholar
  24. 24.
    Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68:2391–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Huang GJ, Yang CM, Chang YS, Amagaya S, Wang HC, Hou WC, et al. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and Erk signaling pathways. J Agric Food Chem. 2010;58:9468–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Orsetti B, Courjal F, Cuny M, Rodriguez C, Theillet C. 17q21-q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene. 1999;18:6262–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Theurillat J-PP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, et al. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science. 2014;346:85–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Privette Vinnedge LM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI. The human DEK oncogene stimulates beta-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene. 2011;30:2741–52.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yuping Huang
    • 1
  • Ning Tan
    • 2
  • Deshui Jia
    • 3
  • Ying Jing
    • 1
  • Qifeng Wang
    • 3
  • Zhe Li
    • 3
  • Jiwei Zhang
    • 3
  • Li Liu
    • 3
  • Jinjun Li
    • 1
  • Zhiao Chen
    • 3
  • Xianghuo He
    • 1
    • 3
  1. 1.State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Guangxi Key Laboratory of Molecular Medicine in Liver Injury and RepairGuilin Medical CollegeGuilinChina
  3. 3.Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations