Advertisement

Tumor Biology

, Volume 36, Issue 12, pp 9685–9692 | Cite as

Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy

  • Jian-Wei Li
  • Zhong-Ming Wu
  • Davor Magetic
  • Li-Jun Zhang
  • Zhi-Long Chen
Research Article

Abstract

In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation.

Keywords

TDPP Porphyrin Tumor Photosensitizer Photodynamic therapy 

Notes

Acknowledgments

This work was supported by the Chinese National Natural Science Foundation (No. 21372042, 21402236, 81101298, 81301878), Foundation of Shanghai government (No. 14431906200, 14140903500, 13431900700, 13430722300, 13ZR1441000, 13ZR1440900, 14ZR1439800, 14ZR1439900, 15ZR1439900, 15XD1523400, 14SJGGYY08, 201370), International Cooperation Foundation of China and Croatia (6-11), and Foundation of Yiwu Science and Technology Bureau (No. 2012-G3-02, 2013-G3-03).

Conflicts of interest

None

References

  1. 1.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    MacCormack MA. Photodynamic therapy. Adv Dermatol. 2006;22:219–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–838. doi: 10.1021/cr900300p.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dougherty TJ. Photodynamic therapy: part II. Semin Surg Oncol. 1995;11(5):333–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45. doi: 10.1038/nrc1894.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034–44. doi: 10.1634/theoncologist.11-9-1034.CrossRefPubMedGoogle Scholar
  7. 7.
    Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clinical Endoscopy. 2013;46(1):24–9. doi: 10.5946/ce.2013.46.1.24.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ethirajan M, Chen Y, Joshi P, Pandey RK. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 2011;40(1):340–62. doi: 10.1039/b915149b.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang LJ, Bian J, Bao LL, Chen HF, Yan YJ, Wang L, et al. Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo. J Cancer Res Clin Oncol. 2014;140(9):1527–36. doi: 10.1007/s00432-014-1717-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Yan YJ, Zheng MZ, Chen ZL, Yu XH, Yang XX, Ding ZL, et al. Studies on preparation and photodynamic mechanism of chlorin p 6–13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem. 2010;18(17):6282–91. doi: 10.1016/j.bmc.2010.07.027.CrossRefPubMedGoogle Scholar
  11. 11.
    O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053–74. doi: 10.1111/j.1751-1097.2009.00585.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Kempa M, Kozub P, Kimball J, Rojkiewicz M, Kus P, Gryczynski Z, et al. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 2015;146:249–54. doi: 10.1016/j.saa.2015.03.076.CrossRefPubMedGoogle Scholar
  13. 13.
    Zenkevich EI. Structural dynamics and relaxation processes with participation of excited singlet and triplet states in sterically hindered porphyrins and their chemical dimers. Macroheterocycles. 2014;7(2):103–21. doi: 10.6060/Mhc140597z.CrossRefGoogle Scholar
  14. 14.
    Serra AC, Pineiro M, Rocha Gonsalves AM, Abrantes M, Laranjo M, Santos AC, et al. Halogen atom effect on photophysical and photodynamic characteristics of derivatives of 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin. J Photochem Photobiol B Biol. 2008;92(1):59–65. doi: 10.1016/j.jphotobiol.2008.04.006.CrossRefGoogle Scholar
  15. 15.
    Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci. 2004;11(6):584–96. doi: 10.1016/j.jocn.2004.02.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Milanesio ME, Moran FS, Yslas EI, Alvarez MG, Rivarola V, Durantini EN. Synthesis and biological evaluation of methoxyphenyl porphyrin derivatives as potential photodynamic agents. Bioorg Med Chem. 2001;9(8):1943–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S. Photodynamic therapy of cancer. Basic principles and applications. Clin Translat Oncology Off Public Fed Spanish Oncol Soc National Cancer Inst of Mexico. 2008;10(3):148–54.Google Scholar
  18. 18.
    Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70(4):391–475.CrossRefPubMedGoogle Scholar
  19. 19.
    Hampton JA, Selman SH. Mechanisms of cell killing in photodynamic therapy using a novel in vivo drug/in vitro light culture system. Photochem Photobiol. 1992;56(2):235–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Stockert JC, Canete M, Juarranz A, Villanueva A, Horobin RW, Borrell JI, et al. Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr Med Chem. 2007;14(9):997–1026.CrossRefPubMedGoogle Scholar
  21. 21.
    van Hillegersberg R, Kort WJ, Wilson JH. Current status of photodynamic therapy in oncology. Drugs. 1994;48(4):510–27.CrossRefPubMedGoogle Scholar
  22. 22.
    Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma—a review part I—a biological basis. J Clin Neurosci Off J Neurosurg Soc Australasia. 2006;13(6):615–25. doi: 10.1016/j.jocn.2005.11.014.Google Scholar
  23. 23.
    Lim YC, Yoo JO, Park D, Kang G, Hwang BM, Kim YM, et al. Antitumor effect of photodynamic therapy with chlorin-based photosensitizer DH-II-24 in colorectal carcinoma. Cancer Sci. 2009;100(12):2431–6. doi: 10.1111/j.1349-7006.2009.01326.x.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jian-Wei Li
    • 1
  • Zhong-Ming Wu
    • 1
  • Davor Magetic
    • 2
  • Li-Jun Zhang
    • 3
  • Zhi-Long Chen
    • 3
  1. 1.Yiwu City Central HospitalZhejiangPeople’s Republic of China
  2. 2.Division of organic chemistry and biochemistrRudjer Boskovic InstituteZagrebCroatia
  3. 3.Department of Pharmaceutical Science & Technology, College of Chemistry and BiologyDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations