Tumor Biology

, Volume 36, Issue 12, pp 9795–9805 | Cite as

Antineoplastic effects of Rhodiola crenulata treatment on B16-F10 melanoma

  • Maxine C. Dudek
  • Kaitlyn E. Wong
  • Lotfi M. Bassa
  • Maria Carmen Mora
  • Jennifer Ser-Dolansky
  • Jean M. Henneberry
  • Giovanna M. Crisi
  • Richard B. Arenas
  • Sallie S. Schneider
Research Article


Melanoma is an aggressive form of skin cancer with limited treatment options for advanced stage disease. Early detection and wide surgical excision remain the initial mode of treatment for primary tumors thus preventing metastases and leading to improved prognosis. Through this work, we have evaluated the antineoplastic effects of Rhodiola crenulata (R. crenulata) root extracts on the B16-F10 melanoma cell line, both in vitro and in vivo. We observed that R. crenulata treatment resulted in increased cell death as well as a reduction in tumor cell proliferation and migration in vitro. Additionally, we observed that R. crenulata decreased the expression of integrin β1 and vimentin and increased the expression of E-cadherin. Further, in mice treated with a topical R. crenulata-based cream therapy, tumors were more likely to have a radial growth pattern, a reduction in mitotic activity, and an increase in tumor necrosis. We also observed that mice drinking water supplemented with R. crenulata displayed a reduction of metastatic foci in disseminated models of melanoma. Collectively, these findings suggest that R. crenulata exhibits striking antitumorigenic and antimetastatic properties and that this extract may harbor potential novel adjuvant therapy for the treatment of melanoma.


Melanoma Rhodiola Vimentin Integrin Vertical growth phase Radial growth phase 



Vertical growth phase


Radial growth phase


Epithelial-to-mesenchymal transition

R. crenulata

Rhodiola crenulata



This work was graciously supported by the Baystate Summer Student Scholars Program and the University of Massachusetts at Amherst Honors Research Grant. We would like to acknowledge the support, education, and care provided by the Baystate Animal Care Facility for their assistance in animal husbandry for this work.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Melanoma of the Skin. In: turning cancer data into discovery. surveillance, epidemiology, and end results (SEER) program. 2004–2010. Accessed 12 March 2015.
  2. 2.
    Tadokoro T et al. UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J. 2003. doi: 10.1096/fj.02-0865fje.PubMedGoogle Scholar
  3. 3.
    Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;5:902–8.CrossRefGoogle Scholar
  4. 4.
    Balch CM, Gershenwald JE, Soong S, et al. Staging and primary tumor mitotic rate. J Surg Oncol. 2011;104:379–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer. 2003;3:559–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Bedrosian I, Faries MB, Guerry D, et al. Incidence of sentinel node metastasis in patients with thin primary melanoma (#1 mm) with vertical growth phase. Ann Surg Oncol. 2000;7:262–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological impolications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.CrossRefPubMedGoogle Scholar
  9. 9.
    Rodriguez M, Aladowicz E, Lanfrancone L, et al. Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Am J Cancer Res. 2008;68:7872–81.CrossRefGoogle Scholar
  10. 10.
    Van Roy R, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodríguez MI, Peralta-Leal A, O’Valle F, et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 2013. doi: 10.1371/journal.pgen.1003531.Google Scholar
  12. 12.
    Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68:3033–46.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li M, Zhang B, Sun B, et al. A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res. 2010;29:109.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burikhanov R, Sviripa VM, Hebbar N, et al. Arylquins target vimentin to trigger Par-4 secretion for tumor cell apoptosis. Nat Chem Biol. 2014;10:924–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Findlay VJ, Wang C, Watson DK, et al. Epithelial-to-mesenchymal transition and the cacner stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther. 2014;21:181–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vleminckx K, Vakaet L, Mareel M, et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.CrossRefPubMedGoogle Scholar
  17. 17.
    Qendro V, Lundgren DH, Rezaul K, et al. Large-scale proteomic characterization of melanoma expressed proteins reveals nestin and vimentin as biomarkers that can potentially distinguish melanoma subtypes. J Proteome Res. 2014;13:5031–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Brown RP, Gerbarg PL. The rhodiola revolution. 1st ed. Holtzbrinck Publishers; 2004.Google Scholar
  19. 19.
    Darbinyan V, Aslanyan G, Amrovan E, et al. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry. 2007;61:343–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Dwyer AV, Whitten DL, Hawrelak JA. Herbal medicines, other than St. John’s Wort, in the treatment of depression: a systematic review. J Clin Ther. 2001;16:40–9.Google Scholar
  21. 21.
    Pannossian A, Wilkman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17:481–93.CrossRefGoogle Scholar
  22. 22.
    Gauger KJ, Rodríguez-Cortés A, Hartwich M, et al. Rhodiola crenulata inhibits the tumorigenic properties of invasive mammary epithelial cells with stem cell characteristics. J Med Plants Res. 2010;4:446–54.Google Scholar
  23. 23.
    Tu Y, Roberts L, Schneider SS. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. J Med Food. 2008;11:413–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Z, Li X, Simoneau AR, Jafari M, et al. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carcinog. 2012;51:257–67.CrossRefPubMedGoogle Scholar
  25. 25.
    Mora MC, Bassa LM, Wong KE, et al. Rhodiola Crenulata inhibits Wnt/β-catenin signaling in glioblastoma. J Surg Res. 2015;197(2):247–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Overwijk WW, Restifo NP. B16 as a mouse model for human melanoma. Curr Protoc Immunol. 2001. doi: 10.1002/0471142735.im2001s39.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinf. 2006. doi: 10.1186/1471-2105-7-123.Google Scholar
  28. 28.
    Skopińska-Różewska E, Hartwich M, Siwicki AK, et al. The influence of Rhodiola rosea extracts and rosavin on cutaneous angiogeneis induced in mice after grafting of syngeneic tumor cells. Cent Eur J Immunol. 2008;33:102–7.Google Scholar
  29. 29.
    Skopińska-Różewska E, Wasiutyński A, Sommer E, et al. The infuence of Rhodiola rosea, Rhodiola kirilowii and Rhodiola quadrifida extracts on cutaneous angiogenesis induced in mice after graftin of human kidney cancer tissue. Cent Eur J Immunol. 2008;33:185–9.Google Scholar
  30. 30.
    Elder DE. Pathology of melanoma. Clin Cancer Res. 2006;12:2309–11.CrossRefGoogle Scholar
  31. 31.
    Meier F, Satyamoorthy K, Nesbit M, et al. Molecular events in melanoma development and progression. Front Biosci. 1998;3:1005–10.CrossRefGoogle Scholar
  32. 32.
    Kuphal S, Bauer R, Bosserhoff A. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24:195–222.CrossRefPubMedGoogle Scholar
  33. 33.
    Hieken TJ, Ronan SG, Farolan M, et al. Beta1 integrin expression in malignant melanoma predicts occult lymph node metastases. Surgery. 1995;118:669–73.CrossRefPubMedGoogle Scholar
  34. 34.
    Qian F, Zhang Z, Wu X, et al. Interaction between integrin α5 and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Commun. 2005;12:1269–75.CrossRefGoogle Scholar
  35. 35.
    Thompson JF, Soong S, Balch S, et al. Prognostic significance of mitotic rate in localized primary cutaneous melanoma: an analysis of patients in the Multi-Institutional American Joint Committee on cancer melanoma staging database. J Clin Oncol. 2011;29:2199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Azzola MF, Shaw HM, Thompson JF, et al. Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma. Cancer. 2003;97:1488–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Balch CM, Gershenwald JE, Soong S, et al. Final version of 2009 AJCC melanoma staging and classificaton. J Clin Oncol. 2009;27:6199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Francken AB, Shaw HM, Thompson JF, et al. The prognostic importance of tumor mitotic rate confirmed in 1317 patients with primary cutaneous melanoma and long follow-up. Ann Surg Oncol. 2004;11:426–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Chiang H, Chien Y, Wu C, et al. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem Toxicol. 2014;65:129–39.CrossRefPubMedGoogle Scholar
  40. 40.
    Mellado B, Gutierrez L, Castel T, et al. Prognostic significance of the detection of circulating malignant cells by reverse transcriptase polymerase chain reaction in long-term clinically disease-free melanoma patients. Clin Cancer Res. 1999;5:1843–8.PubMedGoogle Scholar
  41. 41.
    Hoon DS, Bostick P, Kuo C, et al. Molecular markers in blood as surrogate prognostic indicators of melanoma recurrence. Cancer Res. 2000;60:2253–7.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Maxine C. Dudek
    • 1
    • 2
  • Kaitlyn E. Wong
    • 1
    • 2
    • 3
  • Lotfi M. Bassa
    • 1
    • 2
  • Maria Carmen Mora
    • 2
    • 3
  • Jennifer Ser-Dolansky
    • 1
  • Jean M. Henneberry
    • 3
  • Giovanna M. Crisi
    • 3
  • Richard B. Arenas
    • 3
  • Sallie S. Schneider
    • 1
    • 2
    • 3
    • 4
  1. 1.Pioneer Valley Life Sciences InstituteSpringfieldUSA
  2. 2.University of Massachusetts AmherstAmherstUSA
  3. 3.Baystate Medical CenterTufts University School of MedicineSpringfieldUSA
  4. 4.Baystate Medical Center, Pioneer Valley Life Sciences InstituteUniversity of MassachusettsSpringfieldUSA

Personalised recommendations