Tumor Biology

, Volume 36, Issue 12, pp 9711–9716 | Cite as

High expression of OCT4 is frequent and may cause undesirable treatment outcomes in patients with acute myeloid leukemia

  • Jia-Yu Yin
  • Qin Tang
  • Ling-ling Zhai
  • Ling-yu Zhou
  • Jun Qian
  • Jiang Lin
  • Xiang-mei Wen
  • Jing-dong Zhou
  • Ying-ying Zhang
  • Xiao-wen Zhu
  • Zhao-qun Deng
Research Article

Abstract

In recent years, many researches have shown that OCT4 is overexpressed in both germ cell tumors and somatic cancers. Meanwhile, OCT4 has relationship with poor prognosis in a lot of solid tumors, such as hepatocellular carcinoma, gastric cancer, and esophageal cancer. In our study, we investigated the expression status of OCT4 and its clinical significance in patients with acute myeloid leukemia (AML) using real-time quantitative PCR. The receiver operating characteristic (ROC) curve reveals that the level of OCT4 expression could be available for a potential diagnostic biomarker for differentiating AML from controls with an area under the ROC curve (AUC) of 0.915 (95 % confidence interval (CI) 0.837–0.992; P < 0.001). At the cutoff value of 0.56, the sensitivity and the specificity are 75.9 and 81.2 %, respectively. The amount of white blood cell (WBC) of patients with high OCT4 expression is higher than that of patients with low OCT4 expression (18.2 × 109 versus 2.7 × 109 L−1, P = 0.001). Among those patients who are less than 70 years old, patients with OCT4 high expression have significantly shorter overall survival (OS) than those without OCT4 high expression (P = 0.048). These findings suggest that OCT4 high expression is a common event and may have an adverse impact on prognosis in AML.

Keywords

Cancer stem cell OCT4 Acute myeloid leukemia PCR 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81172592, 81270630), Science and Technology Special Project in Clinical Medicine of Jiangsu Province (BL2012056), and 333 Project of Jiangsu Province (BRA2011085).

Conflicts of interest

None.

References

  1. 1.
    Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894–907. doi: 10.1016/s0140-6736(06)69780-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22(5):915–31. doi: 10.1038/leu.2008.19.CrossRefPubMedGoogle Scholar
  3. 3.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–83.PubMedGoogle Scholar
  4. 4.
    Seifert H, Mohr B, Thiede C, Oelschlagel U, Schakel U, Illmer T, et al. The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia. 2009;23(4):656–63. doi: 10.1038/leu.2008.375.CrossRefPubMedGoogle Scholar
  5. 5.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from cancer and leukemia group b (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen J, Odenike O, Rowley JD. Leukaemogenesis: more than mutant genes. Nat Rev Cancer. 2010;10(1):23–36. doi: 10.1038/nrc2765.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.CrossRefPubMedGoogle Scholar
  8. 8.
    Di J, Duiveman-de Boer T, Zusterzeel PL, Figdor CG, Massuger LF, Torensma R. The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol. 2013;36(5):363–74. doi: 10.1007/s13402-013-0142-8.CrossRefGoogle Scholar
  9. 9.
    Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9(4):357–65. doi: 10.1016/j.stem.2011.08.010.CrossRefPubMedGoogle Scholar
  10. 10.
    Marsden CG, Wright MJ, Pochampally R, Rowan BG. Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol Biol. 2009;590:363–75. doi: 10.1007/978-1-60327-378-7_23.CrossRefPubMedGoogle Scholar
  11. 11.
    Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP. Cancer stem cells—old concepts, new insights. Cell Death Differ. 2008;15(6):947–58. doi: 10.1038/cdd.2008.20.CrossRefPubMedGoogle Scholar
  12. 12.
    Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990;344(6265):435–9. doi: 10.1038/344435a0.CrossRefPubMedGoogle Scholar
  13. 13.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Pan GJ, Chang ZY, Scholer HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002;12(5–6):321–9. doi: 10.1038/sj.cr.7290134.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X, Dai J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells. 2010;28(5):885–93. doi: 10.1002/stem.419.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4(5):361–70.CrossRefPubMedGoogle Scholar
  17. 17.
    El Deeb NM, Abdelzaher E. Stem cell markers OCT4 and nestin in laryngeal squamous cell carcinoma and their relation to survivin expression. Pathol Res Pract. 2014. doi: 10.1016/j.prp.2014.06.005.PubMedGoogle Scholar
  18. 18.
    Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene. 2001;20(56):8085–91. doi: 10.1038/sj.onc.1205088.CrossRefPubMedGoogle Scholar
  19. 19.
    Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer J Int Cancer. 2007;120(7):1598–602. doi: 10.1002/ijc.22508.CrossRefGoogle Scholar
  20. 20.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.CrossRefPubMedGoogle Scholar
  22. 22.
    Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol. 2012;13(2):e83–9. doi: 10.1016/s1470-2045(11)70257-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013;15(4):338–44. doi: 10.1038/ncb2717.CrossRefPubMedGoogle Scholar
  24. 24.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44. doi: 10.1158/0008-5472.can-06-3126.CrossRefPubMedGoogle Scholar
  25. 25.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi: 10.1038/367645a0.CrossRefPubMedGoogle Scholar
  26. 26.
    Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26(2):495–502. doi: 10.1093/carcin/bgh321.CrossRefPubMedGoogle Scholar
  27. 27.
    Abate-Shen C. Homeobox genes and cancer: new OCTaves for an old tune. Cancer Cell. 2003;4(5):329–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003;63(9):2244–50.PubMedGoogle Scholar
  29. 29.
    Chang TS, Wu YC, Chi CC, Su WC, Chang PJ, Lee KF, et al. Activation of IL6/IGFIR confers poor prognosis of HBV-related hepatocellular carcinoma through induction of OCT4/NANOG expression. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(1):201–10. doi: 10.1158/1078-0432.ccr-13-3274.CrossRefGoogle Scholar
  30. 30.
    Li N, Deng W, Ma J, Wei B, Guo K, Shen W, et al. Prognostic evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin expression in gastric cancer. Med Oncol. 2015;32(1):433. doi: 10.1007/s12032-014-0433-6.CrossRefPubMedGoogle Scholar
  31. 31.
    Nagaraja V, Eslick GD. Forthcoming prognostic markers for esophageal cancer: a systematic review and meta-analysis. J Gastrointest Oncol. 2014;5(1):67–76. doi: 10.3978/j.issn.2078-6891.2013.054.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jia-Yu Yin
    • 1
    • 2
  • Qin Tang
    • 2
    • 3
  • Ling-ling Zhai
    • 1
    • 2
  • Ling-yu Zhou
    • 1
    • 2
  • Jun Qian
    • 1
  • Jiang Lin
    • 2
  • Xiang-mei Wen
    • 2
  • Jing-dong Zhou
    • 1
    • 2
  • Ying-ying Zhang
    • 1
    • 2
  • Xiao-wen Zhu
    • 1
    • 2
  • Zhao-qun Deng
    • 2
  1. 1.Department of HematologyThe Affiliated People’s Hospital of Jiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Department of Laboratory CenterThe Affiliated People’s Hospital of Jiangsu UniversityZhenjiangPeople’s Republic of China
  3. 3.Department of HematologyThe Affiliated Jintan Hospital of Jiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations