Tumor Biology

, Volume 36, Issue 12, pp 9589–9597 | Cite as

Specific upregulation of RHOA and RAC1 in cancer-associated fibroblasts found at primary tumor and lymph node metastatic sites in breast cancer

  • Patricia Bortman Rozenchan
  • Fatima Solange Pasini
  • Rosimeire A. Roela
  • Maria Lúcia Hirata Katayama
  • Fiorita Gonzáles Lopes Mundim
  • Helena Brentani
  • Eduardo C. Lyra
  • Maria Mitzi Brentani
Research Article


The importance of tumor–stromal cell interactions in breast tumor progression and invasion is well established. Here, an evaluation of differential genomic profiles of carcinoma-associated fibroblasts (CAFs) compared to fibroblasts derived from tissues adjacent to fibroadenomas (NAFs) revealed altered focal adhesion pathways. These data were validated through confocal assays. To verify the possible role of fibroblasts in lymph node invasion, we constructed a tissue microarray consisting of primary breast cancer samples and corresponding lymph node metastasis and compared the expression of adhesion markers RhoA and Rac1 in fibroblasts located at these different locations. Two distinct tissue microarrays were constructed from the stromal component of 43 primary tumors and matched lymph node samples, respectively. Fibroblasts were characterized for their expression of α-smooth muscle actin (α-SMA) and vimentin. Moreover, we verified the level of these proteins in the stromal compartment from normal adjacent tissue and in non-compromised lymph nodes. Our immunohistochemistry revealed that 59 % of fibroblasts associated with primary tumors and 41 % of the respective metastatic lymph nodes (p = 0.271) displayed positive staining for RhoA. In line with this, 57.1 % of fibroblasts associated with primary tumors presented Rac1-positive staining, and the frequency of co-positivity within the lymph nodes was 42.9 % (p = 0.16). Expression of RhoA and Rac1 was absent in fibroblasts of adjacent normal tissue and in compromised lymph nodes. Based on our findings that no significant changes were observed between primary and metastatic lymph nodes, we suggest that fibroblasts are active participants in the invasion of cancer cells to lymph nodes and support the hypothesis that metastatic tumor cells continue to depend on their microenvironment.


Breast cancer Tumor microenvironment Carcinoma-associated fibroblasts Rho GTPases Metastasis 



The authors are grateful to Ana Lúcia Garippo for her technical assistance in confocal microscopy. This research was supported by Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP) 01/13513-1, 05/51593-5, 04/04607-8, 05/60333-7, 2014/03090-3 and 09/10088-7 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflicts of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5(12):1640–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21(1):40–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.CrossRefPubMedGoogle Scholar
  4. 4.
    Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol. 2010;2(11):a003244.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dang TT, Prechtl AM, Pearson GW. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion. Cancer Res. 2011;71(21):6857–66.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Angelucci C, Maulucci G, Lama G, Proietti G, Colabianchi A, Papi M, et al. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS One. 2012;7(12):e50804. doi: 10.1371/journal.pone.0050804.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 2007;59(13):1299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301(1):43–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Halon A, Donizy P, Surowiak P, Matkowski R. ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell Oncol. 2013;36(3):181–90.CrossRefGoogle Scholar
  11. 11.
    Wu YJ, Tang Y, Li ZF, Li Z, Zhao Y, Wu ZJ, Su Q. Expression and significance of Rac1, Pak1 and Rock1 in gastric carcinoma. Asia Pac J Clin Oncol. 2013; doi:  10.1111/ajco.12052
  12. 12.
    Ridley AJ. Rho proteins and cancer. Breast Cancer Res Treat. 2004;84(1):13–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5(8):711–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Yenidunya S, Bayrak R, Haltas H. Predictive value of pathological and immunohistochemical parameters for axillary lymph node metastasis in breast carcinoma. Diagn Pathol. 2011;6:18. doi: 10.1186/1746-1596-6-18.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cao Y, Paner GP, Rajan PB. Sentinel node status and tumor characteristics: a study of 234 invasive breast carcinomas. Arch Pathol Lab Med. 2005;129(1):82–4.PubMedGoogle Scholar
  16. 16.
    LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer. 2002;100(1):2–8.CrossRefPubMedGoogle Scholar
  17. 17.
    García MF, González-Reyes S, González LO, Junquera S, Berdize N, Del Casar JM, et al. Comparative study of the expression of metalloproteases and their inhibitors in different localizations within primary tumours and in metastatic lymph nodes of breast cancer. Int J Exp Pathol. 2010;91(4):324–34.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Montel V, Mose ES, Tarin D. Tumor-stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. Int J Cancer. 2006;119(2):251–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Del Valle PR, Milani C, Brentani MM, Katayama ML, de Lyra EC, Carraro DM, et al. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 2014;37(3):480–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rozenchan PB, Carraro DM, Brentani H, et al. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer. 2009;125(12):2767–77.CrossRefPubMedGoogle Scholar
  21. 21.
  22. 22.
    Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138:241–56.CrossRefPubMedGoogle Scholar
  23. 23.
    Pathology Reporting of Breast Disease. A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology. NHSBSP Publication No 58. 2005.Google Scholar
  24. 24.
    Allred DC, Harvey JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.PubMedGoogle Scholar
  25. 25.
    Casbas-Hernandez P, Fleming JM, Troester MA. Gene expression analysis of in vitro cocultures to study interactions between breast epithelium and stroma. J Biomed Biotechnol. 2011; 520987. doi:  10.1155/2011/520987
  26. 26.
    Hawsawi NM, Ghebeh H, Hendrayani SF, et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 2008;68(8):2717–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Casey T, Bond J, Tighe S, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114:47–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Singer CF, Gschwantler-Kaulich D, Fink-Retter A, et al. Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat. 2008;110(2):273–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 2007;8(9):R191.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, et al. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene. 2010;29(43):5839–49.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rider L, Oladimeji P, Diakonova M. PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol Endocrinol. 2013;27(7):1048–64.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shin YJ, Kim EH, Roy A, Kim JH. Evidence for a novel mechanism of the PAK1 interaction with the Rho-GTPases Cdc42 and Rac. PLoS One. 2013;8(8):e71495. doi: 10.1371/journal.pone.0071495.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12(5):457–67.CrossRefPubMedGoogle Scholar
  35. 35.
    Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–44.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chang YW, Marlin JW, Chance TW, et al. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Cancer Res. 2006;66(24):11700–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhes Migr. 2011;5(2):170–80.CrossRefGoogle Scholar
  38. 38.
    Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995;15(11):6443–53.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690–701.CrossRefPubMedGoogle Scholar
  40. 40.
    Rösel D, Brábek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, et al. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008;6(9):1410–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, et al. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 2013;231(3):388–99.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Berenjeno IM, Bustelo XR. Identification of the Rock-dependent transcriptome in rodent fibroblasts. Clin Transl Oncol. 2008;10(11):726–38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sells MA, Pfaff A, Chernoff J. Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol. 2000;151(7):1449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816–29.CrossRefPubMedGoogle Scholar
  45. 45.
    Aboussekhra A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol. 2011;55(7–9):841–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400.CrossRefPubMedGoogle Scholar
  47. 47.
    Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 2012;5:39.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Patricia Bortman Rozenchan
    • 1
    • 2
    • 3
  • Fatima Solange Pasini
    • 1
  • Rosimeire A. Roela
    • 1
  • Maria Lúcia Hirata Katayama
    • 1
  • Fiorita Gonzáles Lopes Mundim
    • 4
  • Helena Brentani
    • 5
  • Eduardo C. Lyra
    • 6
  • Maria Mitzi Brentani
    • 1
  1. 1.Radiology and Oncology DepartmentSchool of Medicine of São Paulo UniversitySão PauloBrazil
  2. 2.Colsan—Blood Bank Beneficent AssociationSão PauloBrazil
  3. 3.Gynecological DepartmentSchool of Medicine of São Paulo Federal UniversitySão PauloBrazil
  4. 4.Pathology DepartmentVale do Sapucaí UniversityPouso AlegreBrazil
  5. 5.Psychiatric DepartmentSchool of Medicine of São Paulo University (USP)São PauloBrazil
  6. 6.Brazilian Institute of Cancer ControlSão PauloBrazil

Personalised recommendations