Tumor Biology

, Volume 36, Issue 8, pp 5715–5725 | Cite as

Mitochondrial targeted peptides for cancer therapy

  • Sadaf Farsinejad
  • Zohre Gheisary
  • Sanaz Ebrahimi Samani
  • Ali Mohammad Alizadeh


Mitochondria are a key pharmacological target in all cancer cells, since the structure and function of this organelle is different between healthy and malignant cells. Oxidative damage, disruption of mitochondrial ATP synthesis, calcium dyshomeostasis, mtDNA damage, and induction of the mitochondrial outer membrane permeabilization (MOMP) lead to the mitochondrial dysfunctionality and increase the probability of the programmed cell death or apoptosis. A variety of the signaling pathways have been developed to promote cell death including overexpression of pro-apoptotic members of Bcl-2 family, overloaded calcium, and elevated reactive oxygen species (ROS) play a key role in the promoting mitochondrial cytochrome c release through MOMP and eventually leads to cell death. There are a wide range of the therapeutic-based peptide drugs, known mitochondrial targeted peptides (MTPs), which specifically target mitochondrial pathways into death. They have prominent advantages such as low toxicity, high specificity, and easy to synthesis. Some of these therapeutic peptides have shown to increased the clinical activity alone or in combination with other agents. In this review, we will outline the biological properties of MTPs for cancer therapy. Understanding the molecular mechanisms and signaling pathways controlling cell death by MTPs can be critical for the development of the therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.


Mitochondria Peptide Cancer Review 



Mitochondrial targeted peptides


Inner mitochondrial membrane


Inner mitochondrial space

Cyt c

Cytochrome c


Mitochondrial outer membrane permeabilization


Apoptosis-inducing factor


Second mitochondria-derived activator of caspase


Mitochondrial permeability transition pore


Reactive oxygen species


Voltage-dependent anion channels


Mitochondrial electron transport chain


Bcl-2 homology


Endoplasmic reticulum


Small cell lung cancer


Acute myeloid leukemia


Chronic lymphocytic leukemia


Chronic myeloid leukemia


Acute lymphoblastic leukemia


Hepatocellular carcinoma


Inositol 1,4,5-trisphosphate



This study was supported by Tehran University of Medical Sciences (Grant Number: 25673).

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol. 2014;35(9):8483–523.Google Scholar
  3. 3.
    Imanieh MH, Bagheri F, Alizadeh AM, Ashkani-Esfahani S. Oxytocin has therapeutic effects on cancer, a hypothesis. Eur J Pharmacol. 2014;741:112–23.Google Scholar
  4. 4.
    Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2:57–66.Google Scholar
  6. 6.
    Neuzil J, Dyason JC, Freeman R, Dong L-F, Prochazka L, Wang X-F, et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr. 2007;39:65–72.CrossRefPubMedGoogle Scholar
  7. 7.
    J. Thundimadathil. Cancer treatment using peptides: current therapies and future prospects. J amino acids. 2012;2012.Google Scholar
  8. 8.
    Sun L. Peptide-based drug development. Mod Chem Appl. 2013;1:e103.CrossRefGoogle Scholar
  9. 9.
    Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Pept Sci. 2002;66:184–99.CrossRefGoogle Scholar
  10. 10.
    Li ZJ, Cho CH. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med. 2012;10:S1.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Armstrong JS. Mitochondria: a target for cancer therapy. Br J Pharmacol. 2006;147:239–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Whelan RS, Konstantinidis K, Wei A-C, Chen Y, Reyna DE, Jha S, et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci. 2012;109:6566–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev. 2002;54:101–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Smith RA, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. in Seminars in Cancer Biol. 2009;4-11.Google Scholar
  16. 16.
    Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Martel C, Huynh LH, Garnier A, Ventura-Clapier R, Brenner C. Inhibition of the mitochondrial permeability transition for cytoprotection: direct versus indirect mechanisms. Biochem Res Int. 2012;2012:213403.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Constance JE, Lim CS. Targeting malignant mitochondria with therapeutic peptides. Ther Deliv. 2012;3:961–79.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martinou J-C, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21:92–101.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci. 1999;887:18–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Alizadeh AM, Faghihi M, Khori V, Sohanaki H, Pourkhalili K, Mohammadghasemi F, et al. Oxytocin protects cardiomyocytes from apoptosis induced by ischemia–reperfusion in rat heart: role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides. 2012;36:71–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Adams J, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hosseini J, Mahmoodi M, Jalili A, Fakhari S, Hosseini-zijoud S-M, Tahamtan M, et al. Aloe-emodin Induces apoptosis through the up-regulation of Fas in the human breast cancer cell line MCF-7. Life Sci J. 2014;11(2s):47–53.Google Scholar
  24. 24.
    Jabbour AM, Heraud J, Daunt C, Kaufmann T, Sandow J, O'Reilly L, et al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 2008;16:555–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Ren D, Tu H-C, Kim H, Wang GX, Bean GR, Takeuchi O, et al. BID, BIM, and PUMA are essential for activation of the BAX-and BAK-dependent cell death program. Science. 2010;330:1390–3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Chonghaile TN, Letai A. Mimicking the BH3 domain to kill cancer cells. Oncogene. 2008;27:S149–57.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rooswinkel R, Van De Kooij B, Verheij M, Borst J. Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis. 2012;3:e366.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–32.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP. Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst. 2008;100:580–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P, et al. A novel Bcl-2/Bcl-XL/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene. 2006;26:2374–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Böck B, et al. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 2008;27:6646–56.CrossRefPubMedGoogle Scholar
  34. 34.
    Trudel S, Stewart AK, Li Z, Shu Y, Liang S-B, Trieu Y, et al. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res. 2007;13:621–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, et al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol. 2010;66:869–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18:3163–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vogler M, Dinsdale D, Dyer MJ, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 2008;16:360–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res. 2008;14:3268–77.CrossRefPubMedGoogle Scholar
  41. 41.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, et al. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol. 2010;66:1079–85.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Madiraju SM, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci. 2007;104:19512–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ma C, Yin G, You F, Wei Y, Huang Z, Chen X, et al. A specific cell-penetrating peptide induces apoptosis in SKOV3 cells by down-regulation of Bcl-2. Biotechnol Lett. 2013;35:1791–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101:9381–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kardeh S, Ashkani-Esfahani S, Alizadeh AM. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol. 2014;735:150–68.CrossRefPubMedGoogle Scholar
  49. 49.
    Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91:179–94.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Galindo MF, Jordan J, Gonzalez-Garcia C, Cena V. Reactive oxygen species induce swelling and cytochrome c release but not transmembrane depolarization in isolated rat brain mitochondria. Br J Pharmacol. 2003;139:797–804.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Faghihi M, Alizadeh AM, Khori V, Latifpour M, Khodayari S. The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides. 2012;37:314–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J. 2003;17:2202–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.CrossRefPubMedGoogle Scholar
  54. 54.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.CrossRefPubMedGoogle Scholar
  55. 55.
    Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974;346:261–310.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–90.CrossRefPubMedGoogle Scholar
  57. 57.
    Yin L, Kufe D. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer. 2011;2:56–64.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wierzbicki PM, Adrych K, Kartanowicz D, Dobrowolski S, Stanislawowski M, Chybicki J, et al. Fragile histidine triad (FHIT) gene is overexpressed in colorectal cancer. J Physiol Pharmacol. 2009;4:63–70.Google Scholar
  59. 59.
    Yu GR, Qin WW, Li JP, Hua W, Meng YL, Chen R, et al. HIV-TAT-fused FHIT protein functions as a potential pro-apoptotic molecule in hepatocellular carcinoma cells. Biosci Rep. 2012;32:271–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhivotovsky B, Orrenius S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium. 2011;50:211–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011;119:3–19.CrossRefPubMedGoogle Scholar
  62. 62.
    Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, et al. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ. 2008;15:1857–64.CrossRefPubMedGoogle Scholar
  63. 63.
    Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci. 2002;99:1115–22.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Thor H, Hartzell P, Orrenius S. Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem. 1984;259:6612–5.PubMedGoogle Scholar
  65. 65.
    Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995;82:415–24.CrossRefPubMedGoogle Scholar
  66. 66.
    Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, et al. The cell death-inducing activity of the peptide containing Noxa mitochondrial-targeting domain is associated with calcium release. Cancer Res. 2009;69:8356–65.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, et al. Induction of Ca(2)+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood. 2011;117:2924–34.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene. 2000;19:329–36.CrossRefPubMedGoogle Scholar
  69. 69.
    Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem. 2000;275:12321–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J Biol Chem. 2004;279:13575–83.CrossRefPubMedGoogle Scholar
  71. 71.
    Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007;292:C45–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Pennarun B, Gaidos G, Bucur O, Tinari A, Rupasinghe C, Jin T, et al. killerFLIP: a novel lytic peptide specifically inducing cancer cell death. Cell Death Dis. 2013;4:e894.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology. 2011;216:322–33.CrossRefPubMedGoogle Scholar
  74. 74.
    Wu WKK, Sung JJY, To KF, Yu L, Li HT, Li ZJ, et al. The host defense peptide LL‐37 activates the tumor‐suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010;223:178–86.PubMedGoogle Scholar
  75. 75.
    Ren SX, Cheng AS, To KF, Tong JH, Li MS, Shen J, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72:6512–23.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chuang C-M, Monie A, Wu A, Mao C-P, Hung C-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 2009;20:303–13.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Al-Benna S, Shai Y, Jacobsen F, Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci. 2011;12:8027–51.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Law B, Quinti L, Choi Y, Weissleder R, Tung C-H. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol Cancer Ther. 2006;5:1944–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang L, Ming L, Yu J. BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat. 2007;10:207–17.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ko J-K, Choi K-H, Pan Z, Lin P, Weisleder N, Kim C-W, et al. The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. J Cell Sci. 2007;120:2912–23.CrossRefPubMedGoogle Scholar
  81. 81.
    Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.CrossRefPubMedGoogle Scholar
  82. 82.
    Mizukawa K, Kawamura A, Sasayama T, Tanaka K, Kamei M, Sasaki M, et al. Synthetic Smac peptide enhances the effect of etoposide-induced apoptosis in human glioblastoma cell lines. J Neuro-Oncol. 2006;77:247–55.CrossRefGoogle Scholar
  83. 83.
    Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood. 2012;119:810–6.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Raina D, Kosugi M, Ahmad R, Panchamoorthy G, Rajabi H, Alam M, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther. 2011;10:806–16.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Shoshan-Barmatz V, Abu-Hamad S, Arzoine L, Zaid H. VDAC1 compositions and methods of use thereof for regulating apoptosis. ed: Google Patents, 2014.Google Scholar
  86. 86.
    Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, et al. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis. 2013;4:e809.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, et al. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 2008;3:e1852.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Smeele KM, Southworth R, Eeerbeek O, Wu R, Koeman A, Ardehali H, et al. Acute dissociation of hexokinase from mitochondria abrogates normal functioning, ischemic tolerance and ischemic preconditioning of the intact beating heart. Circulation. 2010;122:A15296.Google Scholar
  89. 89.
    Smolarczyk R, Cichoń T, Graja K, Hucz J, Sochanik A, Szala S. Antitumor effect of RGD-4C-GG-D (KLAKLAK) 2 peptide in mouse B16 (F10) melanoma model. Acta Biochim Pol. 2005;53:801–5.Google Scholar
  90. 90.
    Lee HS, Park CB, Kim JM, Jang SA, Park IY, Kim MS, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008;271:47–55.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sadaf Farsinejad
    • 1
  • Zohre Gheisary
    • 1
  • Sanaz Ebrahimi Samani
    • 1
  • Ali Mohammad Alizadeh
    • 1
  1. 1.Cancer Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations