Tumor Biology

, Volume 36, Issue 12, pp 9631–9640 | Cite as

miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer

  • Haifeng Wang
  • Wei Zhang
  • Yigang Zuo
  • Mingxia Ding
  • Changxing Ke
  • Ruping Yan
  • Hui Zhan
  • Jingyu Liu
  • Jiansong Wang
Research Article

Abstract

MicroRNA-9 upregulation was reported in several tumors. However, its function and mechanism in human bladder cancer remains obscure. The present study aims to identify the expression pattern, biological roles and potential mechanism of miR-9 in human bladder cancers. We found that expression level of miR-9 in bladder cancer tissues was higher than normal tissues. miR-9 mimic transfection was performed in T24 and 5637 cells with low miR-9 expression, and miR-9 inhibitor was employed in BIU-87 cell line with high endogenous expression. miR-9 increased cell proliferation, cell cycle progression, invasion and chemoresistance, with upregulation of cyclin D1, MMP9, Bcl-2, and survivin and downregulation of E-cadherin. Using luciferase reporter assay, we confirmed that LASS2 was a direct target of miR-9 in bladder cancer cells. Transfection of miR-9 mimic downregulated LASS2 expression. LASS2 transfection downregulated Bcl-2 and survivin expression, which were induced by miR-9 mimic in both cell lines. In conclusion, these results indicate that miR-9 upregulation might be associated with malignant phenotype of bladder cancer. miR-9 promotes chemoresistance of bladder cancer cells by target LASS2.

Keywords

miR-9 Bladder cancer LASS2 Chemoresistance 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81260374, No. 81460384), Yunnan Provincial Department of Education Fund (No. 2014Z072), and Joint Project of Science and Technology, Department of Yunnan and Kunming Medical University (No. 2014FA015, No. 2014FZ031).

Conflicts of interest

None.

Supplementary material

13277_2015_3713_MOESM1_ESM.tif (112 kb)
ESM 1 Role of miR-9 on bladder cancer apoptosis without cisplatin treatment (TIFF 112 kb)
13277_2015_3713_Fig7_ESM.gif (31 kb)

High resolution image (GIF 31 kb)

References

  1. 1.
    Dinney CP, McConkey DJ, Millikan RE, Wu X, Bar-Eli M, Adam L, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Cheung G, Sahai A, Billia M, Dasgupta P, Khan MS. Recent advances in the diagnosis and treatment of bladder cancer. BMC Med. 2013;11:13.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hobert O. Gene regulation by transcription factors and microRNAs. Science. 2008;319(5871):1785–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Lv S, Turlova E, Zhao S, Kang H, Han M, Sun HS. Prognostic and clinicopathological significance of survivin expression in bladder cancer patients: a meta-analysis. Tumour Biol. 2014;35(2):1565–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sorensen KD, et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29(7):1073–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer. 2013;132(11):2479–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Gwak JM, Kim HJ, Kim EJ, Chung YR, Yun S, Seo AN, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat. 2014;147(1):39–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Xing F, Sharma S, Liu Y, Mo YY, Wu K, Zhang YY, et al., miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene, 2015.Google Scholar
  11. 11.
    Chen P, Price C, Li Z, Li Y, Cao D, Wiley A, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110(28):11511–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009;19(3):375–83.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y, et al. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat. 2009;118(1):185–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Cai L, Cai X. Up-regulation of miR-9 expression predicate advanced clinicopathological features and poor prognosis in patients with hepatocellular carcinoma. Diagn Pathol. 2014;9(1):1000.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu T, Liu X, Han L, Shen H, Liu L, Shu Y. Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer. Clin Transl Oncol. 2014;16(5):469–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12(3):247–56.PubMedPubMedCentralGoogle Scholar
  18. 18.
    White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D, et al. Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. J Clin Invest. 2013;123(10):4390–404.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 2013;105(22):1750–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, et al. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget. 2014;5(22):11669–80.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB, et al. p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res. 2010;70(2):832–41.CrossRefPubMedGoogle Scholar
  22. 22.
    Rebel JM, Thijssen CD, Vermey M, Delouvee A, Zwarthoff EC, Van der Kwast TH. E-cadherin expression determines the mode of replacement of normal urothelium by human bladder carcinoma cells. Cancer Res. 1994;54(20):5488–92.PubMedGoogle Scholar
  23. 23.
    Miyake H, Hara S, Arakawa S, Kamidono S, Hara I. Overexpression of Bcl-2 regulates sodium butyrate- and/or docetaxel-induced apoptosis in human bladder cancer cells both in vitro and in vivo. Int J Cancer. 2001;93(1):26–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Miyake H, Hara I, Yamanaka K, Arakawa S, Kamidono S. Synergistic enhancement of resistance to cisplatin in human bladder cancer cells by overexpression of mutant-type p53 and Bcl-2. J Urol. 1999;162(6):2176–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Jeon C, Kim M, Kwak C, Kim HH, Ku JH. Prognostic role of survivin in bladder cancer: a systematic review and meta-analysis. PLoS One. 2013;8(10), e76719.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mei F, You J, Liu B, Zhang M, Liu J, Zhang B, et al., LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol. 2014.Google Scholar
  27. 27.
    Xu X, Liu B, Zou P, Zhang Y, You J, Pei F. Silencing of LASS2/TMSG1 enhances invasion and metastasis capacity of prostate cancer cell. J Cell Biochem. 2014;115(4):731–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen L, Lu X, Zeng T, Chen Y, Chen Q, Wu W, et al. Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-β1-Smad4-PAI-1 axis. Oncol Rep. 2014;31(2):885–93.PubMedGoogle Scholar
  29. 29.
    Wang H, Wang J, Zuo Y, Ding M, Yan R, Yang D, et al. Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Med Oncol. 2012;29(3):1921–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Q, Wang H, Yang M, Yang D, Zuo Y, Wang J. Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3. Exp Ther Med. 2013;5(3):942–6.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Haifeng Wang
    • 1
  • Wei Zhang
    • 2
  • Yigang Zuo
    • 1
  • Mingxia Ding
    • 1
  • Changxing Ke
    • 1
  • Ruping Yan
    • 1
  • Hui Zhan
    • 1
  • Jingyu Liu
    • 1
  • Jiansong Wang
    • 1
  1. 1.Department of Urology, The Second Affiliated Hospital of Kunming Medical UniversityYunnan Institute of UrologyKunmingChina
  2. 2.Department of UrologyAffiliated Hospital of Hebei UniversityBaodingChina

Personalised recommendations