Tumor Biology

, Volume 36, Issue 12, pp 9649–9659 | Cite as

Extracellular vesicles from women with breast cancer promote an epithelial-mesenchymal transition-like process in mammary epithelial cells MCF10A

  • Octavio Galindo-Hernandez
  • Cristina Gonzales-Vazquez
  • Pedro Cortes-Reynosa
  • Emmanuel Reyes-Uribe
  • Sonia Chavez-Ocaña
  • Octavio Reyes-Hernandez
  • Mónica Sierra-Martinez
  • Eduardo Perez Salazar
Research Article


Extracellular vesicles (EVs) mediate many stages of tumor progression including angiogenesis, escape from immune surveillance, and extracellular matrix degradation. We studied whether EVs from plasma of women with breast cancer are able to induce an epithelial-mesenchymal transition (EMT) process in mammary epithelial cells MCF10A. Our findings demonstrate that EVs from plasma of breast cancer patients induce a downregulation of E-cadherin expression and an increase of vimentin and N-cadherin expression. Moreover, EVs induce migration and invasion, as well as an increase of NFκB-DNA binding activity and MMP-2 and MMP-9 secretions. In summary, our findings demonstrate, for the first time, that EVs from breast cancer patients induce an EMT-like process in human mammary non-tumorigenic epithelial cells MCF10A.


Extracellular vesicles Breast cancer EMT MCF10A 



We are grateful to Nora Ruiz for her technical assistance. This work was supported by a grant from ICyTDF (224/2012). O. G-H and E. R-U are supported by a Conacyt Predoctoral Training Grant. M-C. G-V. was supported by a Post-Doctoral fellowship from ICyTDF.

Ethical standards

All studied participants signed informed consent, and the ethics committee of Hospital Juarez de Mexico approved the protocol (ARP/CEI/HJM/137/2013).

Conflict of interest


Supplementary material

13277_2015_3711_MOESM1_ESM.tif (245 kb)
Figure S1 EVs of breast cancer patients induce migration in MCF10A cells Cultures of MCF10A cells were scracth-wounded and treated with EV fractions from breast cancer patients Stage IIA (n = 5); Stage IIB (n = 4) and Stage IV (n = 1) and healthy women (n = 7). Pictures were taken at 48 h after wounding and are shown representative results. The graph represents the mean ± S.D. and is expressed as fold migration above control value (healthy women). (TIFF 245 kb)
13277_2015_3711_Fig6_ESM.gif (4 kb)

High resolution image (GIF 3 kb)


  1. 1.
    Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8:2014–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010;36:888–906.CrossRefPubMedGoogle Scholar
  3. 3.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D'Souza-Schorey C. Microvesicles. Mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123:1603–11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ogorevc E, Kralj-Iglic V, Veranic P. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol. 2013;47:197–205.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biro E, Nieuwland R, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004;2:1842–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Thery C, Zitvogel L, Amigorena S. Exosomes. Composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.PubMedGoogle Scholar
  8. 8.
    Baran J, Baj-Krzyworzeka M, Weglarczyk K, Szatanek R, Zembala M, Barbasz J, et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother. 2010;59:841–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: Possible role of a metastasis predictor. Eur J Cancer. 2003;39:184–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Galindo-Hernandez O, Villegas-Comonfort S, Candanedo F, Gonzalez-Vazquez MC, Chavez-Ocana S, Jimenez-Villanueva X, et al. Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients. Arch Med Res. 2013;44:208–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel). 2011;3:716–29.CrossRefGoogle Scholar
  12. 12.
    Kawamoto T, Ohga N, Akiyama K, Hirata N, Kitahara S, Maishi N, et al. Tumor-derived microvesicles induce proangiogenic phenotype in endothelial cells via endocytosis. PLoS One. 2012;7, e34045.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Espinosa-Neira R, Mejia-Rangel J, Cortes-Reynosa P, Salazar EP. Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10a. Int J Biochem Cell Biol. 2011;43:1782–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Hodgson L, Henderson AJ, Dong C. Melanoma cell migration to type IV collagen requires activation of NF-kappaB. Oncogene. 2003;22:98–108.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1:303–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A. 2011;108:4852–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gavert N, Ben-Ze'ev A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 2008;14:199–209.CrossRefPubMedGoogle Scholar
  20. 20.
    Hajra KM, Chen DY, Fearon ER. The slug zinc-finger protein represses e-cadherin in breast cancer. Cancer Res. 2002;62:1613–8.PubMedGoogle Scholar
  21. 21.
    Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, et al. Deltaef1 is a transcriptional repressor of e-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24:2375–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Dong R, Wang Q, He XL, Chu YK, Lu JG, Ma QJ. Role of nuclear factor kappa b and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of mcf-7 cells. Braz J Med Biol Res. 2007;40:1071–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. Nf-kappab is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114:569–81.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20:385–93.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rak J. Extracellular vesicles—biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol. 2013;4:21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012;26:1287–99.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6:622–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing e-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Baranwal S, Alahari SK. Molecular mechanisms controlling e-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation. 2002;106:2442–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of n-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148:779–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noel A, et al. Regulation of vimentin by sip1 in human epithelial breast tumor cells. Oncogene. 2006;25:4975–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Min C, Eddy SF, Sherr DH, Sonenshein GE. Nf-kappab and epithelial to mesenchymal transition of cancer. J Cell Biochem. 2008;104:733–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:201–12.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Radenkovic S, Konjevic G, Jurisic V, Karadzic K, Nikitovic M, Gopcevic K. Values of mmp-2 and mmp-9 in tumor tissue of basal-like breast cancer patients. Cell Biochem Biophys. 2014;68:143–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Front Oncol. 2014;4:361.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306:C621–33.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Octavio Galindo-Hernandez
    • 1
  • Cristina Gonzales-Vazquez
    • 1
  • Pedro Cortes-Reynosa
    • 1
  • Emmanuel Reyes-Uribe
    • 1
  • Sonia Chavez-Ocaña
    • 2
  • Octavio Reyes-Hernandez
    • 2
  • Mónica Sierra-Martinez
    • 2
  • Eduardo Perez Salazar
    • 1
  1. 1.Departamento de Biologia CelularCinvestav-IPNMexicoMexico
  2. 2.Laboratorio de Genetica y Diagnostico MolecularUnidad de Investigacion, Hospital Juarez de MexicoMexicoMexico

Personalised recommendations