Advertisement

Tumor Biology

, Volume 36, Issue 12, pp 9457–9463 | Cite as

Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women

  • Magdalena M. Michalska
  • Dariusz Samulak
  • Hanna Romanowicz
  • Jan Bieńkiewicz
  • Maciej Sobkowski
  • Krzysztof Ciesielski
  • Beata Smolarz
Research Article

Abstract

The aim of this study was to determine single nucleotide polymorphisms in hOGG1 (Ser326Cys (rs13181)) and XRCC1 (Arg194Trp (rs1799782)) genes, respectively, and to identify the correlation between them and the overall risk, grading and staging of ovarian cancer in Polish women. Our study comprised 720 patients diagnosed with ovarian cancer and 720 healthy controls. The genotype analysis of hOGG1 and XRCC1 polymorphisms was performed using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (PCR-RFLP). Odds ratios (OR) and 95 % confidence intervals (CI) for each genotype and allele were calculated. Results revealed an association between hOGG1 Ser326Cys polymorphism and the incidence of ovarian cancer. Variant Cys allele of hOGG1 increased the overall cancer risk (OR 2.89; 95 % CI 2.47–3.38; p < .0001). Moreover, ovarian cancer grading remained in a relationship with both analysed polymorphisms; G1 tumours presented increased frequencies of hOGG1 Cys/Cys homozygotes (OR 18.33; 95 % CI 9.38–35.81; p < .0001) and XRCC1 Trp/Trp homozygotes (OR 20.50; 95 % CI 10.17–41.32; p < .0001). Furthermore, G1 ovarian cancers displayed an overrepresentation of Cys and Trp allele. In conclusion, hOGG1 Ser326Cys and XRCC1 Arg194Trp polymorphisms may be regarded as risk factors of ovarian cancer.

Keywords

Ovarian cancer hOGG1 XRCC1 Polymorphism 

Notes

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Abdulrahman Jr GO, Rahman GA. Epidemiology of breast cancer in Europe and Africa. J Cancer Epidemiol. 2012;2012:915610.CrossRefPubMedGoogle Scholar
  3. 3.
    Limp-Foster M, Kelley MR. DNA repair and gene therapy: implications for translational uses. Environ Mol Mutagen. 2000;35:71–81.CrossRefPubMedGoogle Scholar
  4. 4.
    Dietlein F, Thelen L, Reinhardt HC. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30:326–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Marin JJ, Briz O, Monte MJ, Blazquez AG, Macias RI. Genetic variants in genes involved in mechanisms of chemoresistance to anticancer drugs. Curr Cancer Drug Targets. 2012;12:402–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Au WW, Salama SA, Sierra-Torres CH. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect. 2003;111:1843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wilson DM, Bohr VA. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst). 2007;6:544–59.CrossRefGoogle Scholar
  8. 8.
    Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst). 2007;6:695–711.CrossRefGoogle Scholar
  9. 9.
    Martucci CP, Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993;57:237–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW. Human DNA repair systems: an overview. Environ Mol Mutagen. 1999;33:3–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.CrossRefPubMedGoogle Scholar
  12. 12.
    Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291:1284–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Patel AV, Calle EE, Pavluck AL, Feigelson HS, Thun MJ, Rodriguez C. A prospective study of XRCC1 (X-ray crosscomplementing group 1) polymorphisms and breast cancer risk. Breast Cancer Res. 2005;7:1168–73.CrossRefGoogle Scholar
  14. 14.
    Kohno T, Kunitoh H, Toyama K, Yamamoto S, Kuchiba A, Saito D, et al. Association of the OGG1-Ser326Cys polymorphism with lung adenocarcinoma risk. Cancer Sci. 2006;97:724–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z, Morawiec-Bajda A, et al. DNA damage and repair in gastric cancer—a correlation with the hOGG1 and RAD51 genes polymorphisms. Mutat Res. 2006;601:83–91.CrossRefPubMedGoogle Scholar
  16. 16.
    De Ruyck K, Szaumkessel M, De Rudder I, Dehoorne A, Vral A, Claes K, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res. 2007;631:101–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Pachouri SS, Sobti RC, Kaur P, Singh J. Contrasting impact of DNA repair gene XRCC1 polymorphisms Arg399Gln and Arg194Trp on the risk of lung cancer in the north-Indian population. DNA Cell Biol. 2007;26:186–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Yin J, Vogel U, Ma Y, Qi R, Sun Z, Wang H. The DNA repair gene XRCC1 and genetic susceptibility of lung cancer in a northeastern Chinese population. Lung Cancer. 2007;56:153–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Hatt L, Loft S, Risom L, Møller P, Sørensen M, Raaschou-Nielsen O, et al. OGG1 expression and OGG1 Ser326Cys polymorphism and risk of lung cancer in a prospective study. Mutat Res. 2008;639:45–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Ming-Shiean H, Yu JC, Wang HW, Chen ST, Hsiung CN, Ding SL, et al. Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol. 2010;17:760–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Bewick MA, Lafrenie RM, Conlon MS. Nucleotide excision repair polymorphisms and survival outcome for patients with metastatic breast cancer. J Cancer Res Clin Oncol. 2011;137:543–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu S, Zhang H, Tang Y, Wang J. Polymorphisms in XPD and hOGG1 and prostate cancer risk: a meta-analysis. Urol Int. 2012;89:233–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Xue X, Yin Z, Lu Y, Zhang H, Yan Y, Zhao Y, et al. The joint effect of hOGG1, APE1, and ADPRT polymorphisms and cooking oil fumes on the risk of lung adenocarcinoma in Chinese non-smoking females. PLoS One. 2013;8, e71157.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang W, Dang S, Li Y, Sun M, Jia X, Wang R, et al. hOGG1 Ser326Cys polymorphism and risk of hepatocellular carcinoma among East Asians: a meta-analysis. PLoS One. 2013;8, e60178.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mao Y, Xu X, Lin Y, Chen H, Wu J, Hu Z, et al. Quantitative assessment of the associations between XRCC1 polymorphisms and bladder cancer risk. World J Surg Oncol. 2013;11:58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen X, Liu X, Wang J, Guo W, Sun C, Cai Z, et al. Functional polymorphisms of the hOGG1 gene confer risk to type 2 epithelial ovarian cancer in Chinese. Int J Gynecol Cancer. 2011;21:1407–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, Byrski T, et al. BRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat. 2010;119:201–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Siddiqui-Jain A, Bliesath J, Macalino D, Omori M, Huser N, Streiner N, et al. CK2 inhibitor CX-4945 suppresses DNA repair response triggered by DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for drug combination therapy. Mol Cancer Ther. 2012;11:994–1005.CrossRefPubMedGoogle Scholar
  29. 29.
    Kang S, Sun HY, Zhou RM, Wang N, Hu P, Li Y. DNA repair gene associated with clinical outcome of epithelial ovarian cancer treated with platinum-based chemotherapy. Asian Pac J Cancer Prev. 2013;14:941–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Miao J, Zhang X, Tang QL, Wang XY, Kai L. Prediction value of XRCC 1 gene polymorphism on the survival of ovarian cancer treated by adjuvant chemotherapy. Asian Pac J Cancer Prev. 2012;13:5007–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Li K, Li W. Association between polymorphisms of XRCC1 and ADPRT genes and ovarian cancer survival with platinum-based chemotherapy in Chinese population. Mol Cell Biochem. 2013;372:27–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Cheng CX, Xue M, Li K, Li WS. Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac J Cancer Prev. 2012;13:2541–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Pecorelli S, Benedet JL, Creasman WT, Shepherd JH. FIGO staging of gynecologic cancer. 1994–1997 FIGO Committee on Gynecologic Oncology. International Federation of Gynecology and Obstetrics. Int J Gynaecol Obstet. 1999;65:243–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Scully R. Histological typing of ovarian tumours. Berlin: Springer; 1999.CrossRefGoogle Scholar
  35. 35.
    Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 2008;27:589–605.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Clancy S. DNA damage & repair: mechanisms for maintaining DNA integrity. Nat Educ. 2008;1:103.Google Scholar
  37. 37.
    Brown TA. Chapter 14. In: Department of Biomolecular Sciences, UMIST, editor. Genomes. 2nd ed. Manchester: Oxford Wiley-Liss; 2002.Google Scholar
  38. 38.
    Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010;2010:592980.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Frank SA. Genetic predisposition to cancer—insights from population genetics. Nat Rev Genet. 2004;5:764–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Abdel-Rahman SZ, El-Zein RA. The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett. 2000;159:63–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang Y, Spitz MR, Zhu Y, Dong Q, Shete S, Wu X. From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair. 2003;2:901–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Vodicka P, Stetina R, Polakova V, Tulupova E, Naccarati A, Vodickova L, et al. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis. 2007;28:657–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Silva SN, Moita R, Azevedo AP, Gouveia R, Manita I, Pina JE, et al. Menopausal age and XRCC1 gene polymorphisms: role in breast cancer risk. Cancer Detect Prev. 2007;31:303–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Tsai CW, Tsai MH, Tsou YA, Shih LC, Tseng HC, Chang WS, et al. The joint effect of smoking and hOGG1 genotype on oral cancer in Taiwan. Anticancer Res. 2012;32:3799–803.PubMedGoogle Scholar
  45. 45.
    Ji C, Liu Z, Chen H, Guo H, Liu C. An association between hOGG1 Ser326Cys polymorphism and the risk of bladder cancer in non-smokers: a meta-analysis. BMC Cancer. 2012;12:335.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang W, Wang M, Chen Y, Zhang Z, Wang S, Xu M, et al. The hOGG1 Ser326Cys polymorphism contributes to cancer susceptibility: evidence from 83 case–control studies. Mutagenesis. 2012;27:329–36.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang M, Mo R. Association of hOGG1 Ser326Cys polymorphism with colorectal cancer risk: an updated meta-analysis including 5235 cases and 8438 controls. Tumour Biol. 2014;35:12627–33.CrossRefPubMedGoogle Scholar
  48. 48.
    Yin ZB, Hua RX, Li JH, Sun C, Zhu JH, Su X, et al. Smoking and hOGG1 Ser326Cys polymorphism contribute to lung cancer risk: evidence from a meta-analysis. Tumour Biol. 2014;35:1609–18.CrossRefPubMedGoogle Scholar
  49. 49.
    Kim HS, Kim MK, Chung HH, Kim JW, Park NH, Song YS, et al. Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol Oncol. 2009;113:264–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Khrunin AV, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010;10:54–61.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Magdalena M. Michalska
    • 1
  • Dariusz Samulak
    • 1
    • 2
  • Hanna Romanowicz
    • 3
  • Jan Bieńkiewicz
    • 4
  • Maciej Sobkowski
    • 5
  • Krzysztof Ciesielski
    • 6
  • Beata Smolarz
    • 3
  1. 1.Department of Obstetrics and GynaecologyRegional Hospital in KaliszKaliszPoland
  2. 2.Cathedral of Mother’s and Child’s HealthPoznan University of Medical SciencesPoznańPoland
  3. 3.Laboratory of Cancer Genetics, Department of PathologyInstitute of Polish Mother’s Memorial HospitalLodzPoland
  4. 4.Department of Surgical, Endoscopic and Oncologic GynaecologyInstitute of Polish Mother’s Memorial HospitalLodzPoland
  5. 5.Department of Obstetrics and GynaecologyUniversity HospitalPoznańPoland
  6. 6.Department of SurgeryHospital in GlownoGlownoPoland

Personalised recommendations