Tumor Biology

, Volume 36, Issue 8, pp 5707–5714 | Cite as

Chemokines and their receptors in esophageal cancer—the systematic review and future perspectives

  • Marta Łukaszewicz-Zając
  • Barbara Mroczko
  • Maciej Szmitkowski


Esophageal cancer (EC) is an aggressive malignant solid tumor with rapid progression and unfavorable prognosis. The 5-year survival rate for EC patients was estimated to be less than 10 %. Therefore, there is an urgent need to improve diagnostic tool and effective treatment therapies for EC patients. In our paper, the general structure and function of chemokines and their receptors as well as their role in cancer progression were shortly presented. Moreover, the aim of our paper was to summarize and refer the current findings concerning the role of selected chemokines and their receptors as candidates for tumor markers of EC. Some clinical investigations have proved the involvement of these proteins in proliferation, migration, invasiveness and metastasis of tumor cells. Increasing evidence from previous studies suggested that C-X-C motif chemokine 12 (CXCL12), also known as stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 may provide novel diagnostic and prognostic strategies to reduce the burden of EC. Moreover, therapy targeting the CXCL12/CXCR4 axis may open a new direction for treatment of EC patients. However, given their nonspecific nature, the diagnostic value of chemokines and their receptors may be limited. Therefore, future larger investigations, especially in the blood of EC patients, still need to be continued to further clarify the significance of these proteins as potential candidates for tumor markers in diagnosis and prognosis of EC patients.


Chemokines Esophageal Tumor 



Present project was supported by the Medical University of Białystok, Poland (154-07525 F). BM is supported by funds from the Leading National Research Centre (KNOW), Medical University of Białystok, Poland.

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Crew KD, Neugut AI. Epidemiology of upper gastrointestinal malignancies. Semin Oncol. 2004;31:450–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97:142–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Lundell LR. Etiology and risk factors for esophageal carcinoma. Dig Dis. 2010;28:641–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Mayne ST, Navarro SA. Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia in humans. J Nutr. 2002;132:3467S–70S.PubMedGoogle Scholar
  8. 8.
    Fass R, Sampliner RE. Barrett’s oesophagus: optimal strategies for prevention and treatment. Drugs. 2003;63:555–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Hattori S, Muto M, Ohtsu A, Boku N, Manabe T, Doi T, et al. EMR as salvage treatment for patients with locoregional failure of definitive chemoradiotherapy for esophageal cancer. Gastrointest Endosc. 2003;58:65–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Merkow RP, Bilimoria KY, McCarter MD, Chow WB, Ko CY, Bentrem DJ. Use of multimodality neoadjuvant therapy for esophageal cancer in the United States: assessment of 987 hospitals. Ann Surg Oncol. 2012;19:357–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Uemura N, Kondo T. Current advances in esophageal cancer proteomics. Biochim Biophys Acta. 2014. doi: 10.1016/j.bbapap.2014.09.011.Google Scholar
  12. 12.
    Bollschweiler E, Metzger R, Drebber U, Baldus S, Vallböhmer D, Kocher M, et al. Histological type of esophageal cancer might affect response to neo-adjuvant radiochemotherapy and subsequent prognosis. Ann Oncol. 2009;20:231–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Lindblad M, Rodríguez LA, Lagergren J. Body mass, tobacco and alcohol and risk of esophageal, gastric cardia, and gastric non-cardia adenocarcinoma among men and women in a nested case–control study. Cancer Causes Control. 2005;16:285–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Chang F, Syrjänen S, Shen Q, Cintorino M, Santopietro R, Tosi P, et al. Evaluation of HPV, CMV, HSV and EBV in esophageal squamous cell carcinomas from a high-incidence area of China. Anticancer Res. 2000;20:3935–40.PubMedGoogle Scholar
  15. 15.
    Lyronis ID, Baritaki S, Bizakis I, Tsardi M, Spandidos DA. Evaluation of the prevalence of human papillomavirus and Epstein-Barr virus in esophageal squamous cell carcinomas. Int J Biol Markers. 2005;20:5–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Rice TW, Rusch VW, Apperson-Hansen C, Allen MS, Chen LQ, Hunter JG, et al. Worldwide esophageal cancer collaboration. Dis Esophagus. 2009;22:1–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Coleman MP, Gatta G, Verdecchia A, Estève J, Sant M, Storm H, et al. Eurocare-3 summary: cancer survival in Europe at the end of the 20th century. Ann Oncol. 2003;14 Suppl 5:v128–149.CrossRefPubMedGoogle Scholar
  18. 18.
    El-Shahat M, Lotfy M, Fahmy L, Abouel-Nour MF, El-Kenawy A-M. Prognostic value of microvessel density, matrix metalloproteinase-9 and p53 protein expression in esophageal cancer. J Egypt Natl Canc Inst. 2004;16:224–30.PubMedGoogle Scholar
  19. 19.
    Tyers M, Mann M. From genomics to proteomics. Nature. 2003;422:193–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Motoyama S, Miura M, Hinai Y, Maruyama K, Usami S, Saito H, et al. CRP genetic polymorphism is associated with lymph node metastasis in thoracic esophageal squamous cell cancer. Ann Surg Oncol. 2009;16:2479–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett. 2007;256:137–65.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shrivastava MS, Hussain Z, Giricz O, Shenoy N, Polineni R, Maitra A, et al. Targeting chemokine pathways in esophageal adenocarcinoma. Cell Cycle. 2014;13:3320–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004;22:891–928.CrossRefPubMedGoogle Scholar
  24. 24.
    Ransohoff RM. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 2009;31:711–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29:709–22.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vindrieux D, Escobar P, Lazennec G. Emerging roles of chemokines in prostate cancer. Endocr Relat Cancer. 2009;16:663–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V. Multifaceted link between cancer and inflammation. Biosci Rep. 2012;32:1–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, Schilling MK, et al. Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia. 2007;9:862–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16:133–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kruizinga RC, Bestebroer J, Berghuis P, de Haas CJ, Links TP, de Vries EG, et al. Role of chemokines and their receptors in cancer. Curr Pharm Des. 2009;15:3396–416.CrossRefPubMedGoogle Scholar
  34. 34.
    Hartmann TN, Burger M, Burger JA. The role of adhesion molecules and chemokine receptor CXCR4 (CD184) in small cell lung cancer. J Biol Regul Homeost Agents. 2004;18:126–30.PubMedGoogle Scholar
  35. 35.
    Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ, Mehra R, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Schwarze SR, Luo J, Isaacs WB, Jarrard DF. Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate. 2005;64:67–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Kimsey TF, Campbell AS, Albo D, Wilson M, Wang TN. Co-localization of macrophage inflammatory protein-3alpha (Mip-3alpha) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J. 2004;10:374–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res. 2000;6:3530–5.PubMedGoogle Scholar
  40. 40.
    Kim J, Mori T, Chen SL, Amersi FF, Martinez SR, Kuo C, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg. 2006;244:113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yuecheng Y, Xiaoyan X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev. 2007;16:430–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Xu L, Fidler IJ. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res. 2000;60:4610–6.PubMedGoogle Scholar
  43. 43.
    Iwakiri S, Mino N, Takahashi T, Sonobe M, Nagai S, Okubo K, et al. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer. 2009;115:2580–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, Okumura H, Setoyama T, et al. Expression of CXCL12 and its receptor CXCR4 in esophageal squamous cell carcinoma. Oncol Rep. 2009;21:65–71.PubMedGoogle Scholar
  45. 45.
    Wang DF, Lou N, Zeng CG, Zhang X, Chen FJ. Expression of CXCL12/CXCR4 and its correlation to prognosis in esophageal squamous cell carcinoma. Ai Zheng. 2009;28:154–8.PubMedGoogle Scholar
  46. 46.
    Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P, et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst. 2005;97:1840–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Lu CL, Ji Y, Ge D, Guo J, Ding JY. The expression of CXCR4 and its relationship with matrix metalloproteinase-9/vascular endothelial growth factor in esophageal squamous cell cancer. Dis Esophagus. 2011;24:283–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang DF, Lou N, Qiu MZ, Lin YB, Liang Y. Effects of CXCR4 gene silencing by lentivirus shRNA on proliferation of the EC9706 human esophageal carcinoma cell line. Tumour Biol. 2013;34:2951–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Tachezy M, Zander H, Gebauer F, von Loga K, Pantel K, Izbicki JR, et al. CXCR7 expression in esophageal cancer. J Transl Med. 2013;11:238.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R, et al. Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery. 2013;154:512–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Sui P, Hu P, Zhang T, Zhang X, Liu Q, Du J. High expression of cxcr-2 correlates with lymph node metastasis and predicts unfavorable prognosis in resected esophageal carcinoma. Med Oncol. 2014;31:809.CrossRefPubMedGoogle Scholar
  52. 52.
    Irino T, Takeuchi H, Matsuda S, Saikawa Y, Kawakubo H, Wada N, et al. Cc-chemokine receptor ccr7: a key molecule for lymph node metastasis in esophageal squamous cell carcinoma. BMC Cancer. 2014;14:291.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu XY, Song L, Wang Z. Ccr7: a metastasis and prognosis indicator of postoperative patients with esophageal carcinoma. Hepatogastroenterology. 2013;60:747–50.PubMedGoogle Scholar
  54. 54.
    Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Konieczny D, et al. Elevation of circulating interleukin-8 is related to lymph node and distant metastases in esophageal squamous cell carcinomas—implication for clinical evaluation of cancer patient. Cytokine. 2008;41:232–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Keeley BR, Islami F, Pourshams A, Poustchi H, Pak JS, Brennan P, et al. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer. Cancer Sci. 2014;105:1205–11.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Marta Łukaszewicz-Zając
    • 1
    • 2
  • Barbara Mroczko
    • 2
    • 3
  • Maciej Szmitkowski
    • 1
    • 2
  1. 1.Department of Biochemical DiagnosticsMedical University of BiałystokBiałystokPoland
  2. 2.Department of Biochemical DiagnosticsUniversity Hospital in BiałystokBiałystokPoland
  3. 3.Department of Neurodegeneration DiagnosticsMedical University of BiałystokBiałystokPoland

Personalised recommendations