Tumor Biology

, Volume 36, Issue 12, pp 9311–9317 | Cite as

Shikonin inhibits invasiveness of osteosarcoma through MMP13 suppression

Research Article
  • 231 Downloads

Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor, notorious for its metastasis. We have recently shown that shikonin, an effective constituent extracted from Chinese medicinal herb, induces necroptosis in OS cells. Nevertheless, the effects of low-dose shikonin on the invasiveness of OS cells are unknown. Here, we showed that shikonin dose-dependently decreased OS cell invasiveness in both scratch wound healing assay and transwell cell migration assay. Moreover, the direct target of shikonin on cell invasiveness was found to be matrix metalloproteinase (MMP)-13. Further, the inhibitory effects of shikonin on cell invasiveness were completely abolished in MMP13-overexpressing OS cells. Together, these data suggest that shikonin may suppress OS invasiveness through MMP13 suppression. Thus, our data highlight a previous unappreciated role for shikonin in suppressing OS cell metastasis.

Keywords

Osteosarcoma (OS) Shikonin Matrix metalloproteinase (MMP)-13 

Notes

Conflicts of interest

None

References

  1. 1.
    Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, et al. Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res. 1998;18:657–66.PubMedGoogle Scholar
  2. 2.
    Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.CrossRefPubMedGoogle Scholar
  3. 3.
    Li G, Fu D, Liang W, Fan L, Chen K, Shan L, et al. Cyc1 silencing sensitizes osteosarcoma cells to trail-induced apoptosis. Cell Physiol Biochem. 2014;34:2070–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Y, He J, Chen X, Li J, Shen M, Yu W, et al. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of erk and akt pathways. Cell Physiol Biochem. 2014;34:637–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Q, Cai J, Wang J, Xiong C, Zhao J. Mir-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Xiao Q, Zhang X, Wu Y, Yang Y. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol. 2014;35:7611–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Luo XJ, Tang DG, Gao TL, Zhang YL, Wang M, Quan ZX, et al. Microrna-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of sox4. Cell Physiol Biochem. 2014;34:2180–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Li F, Li S, Cheng T. Tgf-beta1 promotes osteosarcoma cell migration and invasion through the mir-143-versican pathway. Cell Physiol Biochem. 2014;34:2169–79.CrossRefPubMedGoogle Scholar
  9. 9.
    He Y, Meng C, Shao Z, Wang H, Yang S. Mir-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34:1485–96.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen J, Fu H, Wang Z, Yin F, Li J, Hua Y, et al. A new synthetic ursolic acid derivative iua with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol Biochem. 2014;34:724–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Xu H, Liu X, Zhao J. Down-regulation of mir-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 2014;33:1547–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y. Mir-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting hmga1. Cell Physiol Biochem. 2014;33:1329–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Pan W, Wang H, Jianwei R, Ye Z. Microrna-27a promotes proliferation, migration and invasion by targeting map2k4 in human osteosarcoma cells. Cell Physiol Biochem. 2014;33:402–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen X, Luther G, Zhang W, Nan G, Wagner ER, Liao Z, et al. The e-f hand calcium-binding protein s100a4 regulates the proliferation, survival and differentiation potential of human osteosarcoma cells. Cell Physiol Biochem. 2013;32:1083–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Chang YW, Zhao YF, Cao YL, Gu XF, Li ZQ, Wang SQ, et al. Liver x receptor alpha inhibits osteosarcoma cell proliferation through up-regulation of foxo1. Cell Physiol Biochem. 2013;32:180–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70:217–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Shang HS, Chang JB, Lin JH, Lin JP, Hsu SC, Liu CM, et al. Deguelin inhibits the migration and invasion of u-2 os human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules. 2014;19:16588–608.CrossRefPubMedGoogle Scholar
  18. 18.
    Chueh FS, Chen YY, Huang AC, Ho HC, Liao CL, Yang JS, et al. Bufalin-inhibited migration and invasion in human osteosarcoma u-2 os cells is carried out by suppression of the matrix metalloproteinase-2, ERK, and JNK signaling pathways. Environ Toxicol. 2014;29:21–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang GF, Li XH, Zhao Z, Wang WB. Arsenic trioxide up-regulates fas expression in human osteosarcoma cells. Chin Med J (Engl). 2010;123:1768–73.Google Scholar
  20. 20.
    Zhou X, Yuan B, Yuan W, Wang C, Gao R, Wang J. The expression and clinical significance of high mobility group nucleosome binding domain 5 in human osteosarcoma. Tumour Biol. 2014;35:6539–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhai M, Cong L, Han Y, Tu G. Cip2a is overexpressed in osteosarcoma and regulates cell proliferation and invasion. Tumour Biol. 2014;35:1123–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Meng Q, Zhao J, Liu H, Zhou G, Zhang W, Xu X, et al. Hmgb1 promotes cellular proliferation and invasion, suppresses cellular apoptosis in osteosarcoma. Tumour Biol. 2014;35:12265–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Li H, Zhang K, Liu LH, Ouyang Y, Bu J, Guo HB, et al. A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumour Biol. 2014;35:5487–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Jianwei Z, Fan L, Xiancheng L, Enzhong B, Shuai L, Can L. Microrna 181a improves proliferation and invasion, suppresses apoptosis of osteosarcoma cell. Tumour Biol. 2013;34:3331–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Jianwei Z, Enzhong B, Fan L, Jian L, Ning A. Effects of kruppel-like factor 6 on osteosarcoma cell biological behavior. Tumour Biol. 2013;34:1097–105.CrossRefPubMedGoogle Scholar
  26. 26.
    Futamura N, Nishida Y, Urakawa H, Kozawa E, Ikuta K, Hamada S, et al. Emmprin co-expressed with matrix metalloproteinases predicts poor prognosis in patients with osteosarcoma. Tumour Biol. 2014;35:5159–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Ryu B, Li Y, Qian ZJ, Kim MM, Kim SK. Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to Cox-2, iNOS, MMPS, and MAPK signaling: implication for chronic articular disease. Chem Biol Interact. 2009;179:192–201.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou Y, Hu Z, Li N, Jiang R. Interleukin-32 stimulates osteosarcoma cell invasion and motility via AKT pathway-mediated MMP-13 expression. Int J Mol Med. 2015;35:1729–33.PubMedGoogle Scholar
  29. 29.
    Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19:1123–30.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, et al. Autonomous regulation of osteosarcoma cell invasiveness by wnt5a/ror2 signaling. Oncogene. 2009;28:3197–208.CrossRefPubMedGoogle Scholar
  31. 31.
    Ma O, Cai WW, Zender L, Dayaram T, Shen J, Herron AJ, et al. Mmp13, birc2 (ciap1), and birc3 (ciap2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 2009;69:2559–67.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Andujar I, Rios JL, Giner RM, Recio MC. Pharmacological properties of shikonin—a review of literature since 2002. Planta Med. 2013;79:1685–97.CrossRefPubMedGoogle Scholar
  33. 33.
    Andujar I, Recio MC, Giner RM, Rios JL. Traditional Chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr Med Chem. 2013;20:2892–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang R, Yin R, Zhou W, Xu D, Li S. Shikonin and its derivatives: a patent review. Expert Opin Ther Pat. 2012;22:977–97.CrossRefPubMedGoogle Scholar
  35. 35.
    Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing rip1 and rip3 dependent necroptosis. BMC Cancer. 2013;13:580.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ponten J, Saksela E. Two established in vitro cell lines from human mesenchymal tumours. Int J Cancer. 1967;2:434–47.CrossRefPubMedGoogle Scholar
  37. 37.
    Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, et al. Cancer stem-like cells of glioblastoma characteristically express mmp-13 and display highly invasive activity. Int J Oncol. 2010;37:1121–31.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of OrthopedicsGuizhou Province Osteological HospitalGuiyangChina

Personalised recommendations