Tumor Biology

, Volume 36, Issue 12, pp 9233–9243 | Cite as

ABCG2 is a potential marker of tumor-initiating cells in breast cancer

  • Renata Danielle Sicchieri
  • Willian Abraham da Silveira
  • Larissa Raquel Mouro Mandarano
  • Tatiane Mendes Gonçalves de Oliveira
  • Hélio Humberto Angotti Carrara
  • Valdair Francisco Muglia
  • Jurandyr Moreira de Andrade
  • Daniel Guimarães Tiezzi
Research Article

Abstract

The existence of tumor-initiating cells (TICs) within solid tumors has been hypothesized to explain tumor heterogeneity and resistance to cancer therapy. In breast cancer, the expression of CD44 and CD24 and the activity of aldehyde dehydrogenase 1 (ALDH1) can be used to selectively isolate a cell population enriched in TICs. However, the ideal marker to identify TICs has not been established. The aim of this study was to evaluate the expression of novel potential markers for TIC in breast carcinoma. We prospectively analyzed the expression of CD44, CD24, ABCG2, and CXCR4, and the activity of ALDH1 by using flow cytometry in 48 invasive ductal carcinomas from locally advanced and metastatic breast cancer patients who were administered primary chemotherapy. A mammosphere assay was employed in 30 samples. The relationship among flow cytometric analyses, ABCG2 gene expression, and clinical and pathological responses to therapy was analyzed. The GSE32646 database was analyzed in silico to identify genes associated with tumors with low and high ABCG2 expression. We observed that the presence of ABCG2+ cells within the primary tumor was the only marker to predict the formation of mammospheres in vitro (R 2 = 0.15, p = 0.029). Quantitative polymerase chain reaction (qPCR) revealed a positive correlation between ABCG2 expression and the presence of ABCG2+ cells within the primary tumor. The expression of ABCG2 was predictive of the response to neoadjuvant chemotherapy in our experiments and in the GSE32646 dataset (p = 0.04 and p = 0.002, respectively). The in silico analysis demonstrated that ABCG2Up breast cancer samples have a slower cell cycle and a higher expression of membrane proteins but a greater potential for chromosomal instability, metastasis, immune evasion, and resistance to hypoxia. Such genetic characteristics are compatible with highly aggressive and resistant tumors. Our results support the hypothesis that the presence of ABCG2+ cells in breast carcinomas is a marker of resistance to chemotherapy, and based on in vitro assays and the genetic profile, we show, for the first time, that ABCG2 protein can be used as an independent marker for TIC identification in breast cancer.

Keywords

Breast cancer Tumor-initiating cells Chemotherapy Resistance to treatment 

Abbreviations

ABC

ATP-binding cassette

ALDH1

Aldehyde dehydrogenase 1

CXCR4

Chemokine receptor type 4

ER

Estrogen receptor

GPCRs

G protein-coupled receptors

HER2

Human epidermal growth factor receptor 2

IDCs

Invasive ductal carcinomas

MEM

Minimum essential medium

PgR

Progesterone receptor

qRT-PCR

Quantitative real-time polymerase chain reaction

TBP

TATA box binding protein

TICs

Tumor-initiating cells

TNBC

Triple-negative breast cancer

Notes

Acknowledgements

The authors wish to thank Stanislas Du Manoir. PhD, from the IRCM (Montpellier Cancer Research Institute) for his useful advices in the writing of the draft.

This research was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (process 2011/13020-4).

Conflicts of interest

None

Authors’ contributions

DGT participated in the design of the study, recruitment, and treatment of patients, draft the manuscript, and performed statistical analysis. JMA participated in the design and coordination of the study and helped to draft the manuscript. RDS was responsible for experimental procedures and helped to draft the manuscript. WAS was responsible for in silico analysis. LRMM and HHAC helped with the data collection and were responsible for patients’ treatment. TMGO and VFM were responsible for ultrasound-guided core-needle biopsy. All authors read and approved the final manuscript.

Supplementary material

13277_2015_3647_MOESM1_ESM.xls (64 kb)
Supplementary Table S1 List of genes differentially expressed between ABCG2high and ABCG2low breast cancer samples. (XLS 63 kb)

References

  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6:2332–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16:45–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of cd44+/cd24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005;11:1154–9.PubMedGoogle Scholar
  8. 8.
    Beriwal S, Schwartz GF, Komarnicky L, Garcia-Young JA. Breast-conserving therapy after neoadjuvant chemotherapy: long-term results. Breast J. 2006;12:159–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10:R25.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from national surgical adjuvant breast and bowel project b-18. J Clin Oncol. 1997;15:2483–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16:2672–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao Z, et al. The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat. 2010;122:795–801.CrossRefPubMedGoogle Scholar
  14. 14.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.CrossRefPubMedGoogle Scholar
  15. 15.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human mcf-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10:R52.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Avital I, Stojadinovic A, Wang H, Mannion C, Cho WC, Wang J, et al. Isolation of stem cells using spheroids from fresh surgical specimen: an analytic mini-review. Cancer Genomics Proteomics. 2014;11:57–65.PubMedGoogle Scholar
  18. 18.
    Pommier SJ, Hernandez A, Han E, Massimino K, Muller P, Diggs B, et al. Fresh surgical specimens yield breast stem/progenitor cells and reveal their oncogenic abnormalities. Ann Surg Oncol. 2012;19:527–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Abrial SC, Penault-Llorca F, Delva R, Bougnoux P, Leduc B, Mouret-Reynier MA, et al. High prognostic significance of residual disease after neoadjuvant chemotherapy: a retrospective study in 710 patients with operable breast cancer. Breast Cancer Res Treat. 2005;94:255–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001;345:833–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D, Marie JP, et al. Breast cancer resistance protein and p-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res. 2004;10:7896–902.CrossRefPubMedGoogle Scholar
  22. 22.
    Diestra JE, Scheffer GL, Catala I, Maliepaard M, Schellens JH, Scheper RJ, et al. Frequent expression of the multi-drug resistance-associated protein bcrp/mxr/abcp/abcg2 in human tumours detected by the bxp-21 monoclonal antibody in paraffin-embedded material. J Pathol. 2002;198:213–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the atp binding cassette (abc) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.CrossRefPubMedGoogle Scholar
  24. 24.
    Blot E, Laberge-Le Couteulx S, Jamali H, Cornic M, Guillemet C, Duval C, et al. Cxcr4 membrane expression in node-negative breast cancer. Breast J. 2008;14:268–74.CrossRefPubMedGoogle Scholar
  25. 25.
    Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, et al. A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167:4747–57.CrossRefPubMedGoogle Scholar
  26. 26.
    Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of cxcr4 blocks breast cancer metastasis. Cancer Res. 2005;65:967–71.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G. Cxcr4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y Acad Sci. 2004;1030:162–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. Cxcr4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64:8604–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, et al. Gstp1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in er-negative breast cancer. Cancer Sci. 2012;103:913–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Team RC. R: a language and environment for statistical computing. Vienna: Foundation for Statistical Computing; 2014.Google Scholar
  31. 31.
    Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy–analysis of affymetrix genechip data at the probe level. Bioinformatics. 2004;20:307–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Carlson M. Hgu133plus2.Db: Affymetrix human genome u133 plus 2.0 array annotation data (chip hgu133plus2) 2014. http://www.bioconductor.org/packages/release/data/annotation/manuals/hgu133plus2.db/man/hgu133plus2.db.pdf.
  33. 33.
    Morrissey ER, Diaz-Uriarte R. Pomelo ii: finding differentially expressed genes. Nucleic Acids Res. 2009;37:W581–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3, Article3.CrossRefPubMedGoogle Scholar
  35. 35.
    Gregory R, Warnes BB, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. Gplots: various r programming tools for plotting data. 2014. http://cran.r-project.org/web/packages/gplots/gplots.pdf.
  36. 36.
    Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. Genecards version 3: the human gene integrator. Database (Oxford). 2010;2010, baq020.CrossRefGoogle Scholar
  37. 37.
    Yadav BS, Sharma SC, Chanana P, Jhamb S. Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol. 2014;5:125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int J Biochem Cell Biol. 2009;41:1216–27.CrossRefPubMedGoogle Scholar
  39. 39.
    Krupp M, Weinmann A, Galle PR, Teufel A. Actin binding lim protein 3 (ablim3). Int J Mol Med. 2006;17:129–33.PubMedGoogle Scholar
  40. 40.
    Varisli L. Meta-analysis of the expression of the mitosis-related gene fam83d. Oncol Lett. 2012;4:1335–40.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12:527–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Reinhold WC, Erliandri I, Liu H, Zoppoli G, Pommier Y, Larionov V. Identification of a predominant co-regulation among kinetochore genes, prospective regulatory elements, and association with genomic instability. PLoS One. 2011;6, e25991.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Amato A, Schillaci T, Lentini L, Di Leonardo A. Cenpa overexpression promotes genome instability in prb-depleted human cells. Mol Cancer. 2009;8:119.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wascher RA, Bostick PJ, Huynh KT, Turner R, Qi K, Giuliano AE, et al. Detection of mage-a3 in breast cancer patients’ sentinel lymph nodes. Br J Cancer. 2001;85:1340–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wong PP, Yeoh CC, Ahmad AS, Chelala C, Gillett C, Speirs V, et al. Identification of magea antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579–88.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res. 2005;11:1086–92.PubMedGoogle Scholar
  47. 47.
    Hu Y, Xing J, Wang L, Huang M, Guo X, Chen L, et al. Rgs22, a novel cancer/testis antigen, inhibits epithelial cell invasion and metastasis. Clin Exp Metastasis. 2011;28:541–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cdna: sequence, expression and homology to v-erb-a. Nature. 1986;320:134–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Yamamoto KK, Pousette A, Chow P, Wilson H, el Shami S, French CK. Isolation of a cdna encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase b. J Biol Chem. 1992;267:2575–81.PubMedGoogle Scholar
  50. 50.
    Keysar SB, Jimeno A. More than markers: biological significance of cancer stem cell-defining molecules. Mol Cancer Ther. 2010;9:2450–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010;107:3522–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2:3.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. Abc transporters in cscs membranes as a novel target for treating tumor relapse. Front Pharmacol. 2014;5:163.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Scharenberg CW, Harkey MA, Torok-Storb B. The abcg2 transporter is an efficient hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Tiezzi DG, Valejo FA, Marana HR, Carrara HH, Benevides L, Antonio HM, Sicchieri RD, Milanezi CM, Silva JS, de Andrade JM. Cd44(+)/cd24 (−) cells and lymph node metastasis in stage i and ii invasive ductal carcinoma of the breast. Med Oncol. 2011;29(3):1479–85.Google Scholar
  57. 57.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, et al. The cd44+/cd24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10:R53.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Krishnamurthy P, Schuetz JD. The role of abcg2 and abcb6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol. 2011;12:647–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (bcrp/abcg2) in cancer drug resistance. Biochem Pharmacol. 2012;83:1084–103.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, et al. Mesenchymal stem cells promote mammosphere formation and decrease e-cadherin in normal and malignant breast cells. PLoS One. 2010;5, e12180.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, et al. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via egf/egfr/akt pathway. Breast Cancer Res Treat. 2012;132:153–64.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Renata Danielle Sicchieri
    • 1
  • Willian Abraham da Silveira
    • 1
    • 2
  • Larissa Raquel Mouro Mandarano
    • 1
  • Tatiane Mendes Gonçalves de Oliveira
    • 1
  • Hélio Humberto Angotti Carrara
    • 1
  • Valdair Francisco Muglia
    • 1
  • Jurandyr Moreira de Andrade
    • 1
  • Daniel Guimarães Tiezzi
    • 1
    • 3
  1. 1.Department of Gynecology and Obstetrics – Breast Disease Division, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.Institut de Recherche en Cancérologie de MontpellierUniversité Montpellier INSERM U896MontpellierFrance
  3. 3.CISBi – Center for Integrative Systems Biology – Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations