Tumor Biology

, Volume 36, Issue 11, pp 8881–8886 | Cite as

Polymorphisms of FGFR1 in HBV-related hepatocellular carcinoma

  • Haiyang Xie
  • Chunyang Xing
  • Bajin Wei
  • Xiao Xu
  • Liming Wu
  • Jian Wu
  • Leiming Chen
  • Guoqiang Cao
  • Hai Chen
  • Xueqin Meng
  • Shengyong Yin
  • Lin Zhou
  • Shusen Zheng
Research Article

Abstract

Hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in China. It is important to understand the genetic mechanisms underlying the development and progression of HBV-related HCC and to identify new biomarkers for clinical treatment. The important role of fibroblast growth factor receptors (FGFRs) has been widely recognized in many types of cancers, but the association between FGFR polymorphisms and HCC carcinogenesis has been rarely reported. In this study, 199 patients with HBV-associated cirrhosis, 203 with HBV-associated HCC, and 184 healthy controls with no liver diseases were enrolled as participants. Using SNaPshot assays, five SNPs (rs13317, rs7825208, rs1047057, rs1047111, and rs1966265) of growth factor receptor genes were genotyped. Our results showed that the G/A and G/G genotypes at rs7825208 of FGFR1 were negatively correlated with HBV-related HCC (odds ratio (OR) = 0.45, 95 % confidence interval (CI) = 0.22–0.93, P = 0.027). However, after Bonferroni correction, these significant differences no longer existed (P > 0.05). Our results indicated that these five polymorphisms of fibroblast growth factor receptor genes do not play any independent roles in the tumorigenesis and progression of HBV-related HCC in Han Chinese patients.

Keywords

HBV Liver cirrhosis HCC FGFR1 Polymorphism 

Notes

Conflict of interest

None

Funding

This study was supported by grants from the Zhejiang Provincial Natural Science Foundation (LY13H160004, Y15H160064), the Chinese High Tech Research & Development (863) Program (2012AA020204), the National S&T Major Project (No. 2012ZX10002017), and the National Natural Science Foundation of China (81401319).

References

  1. 1.
    Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.CrossRefPubMedGoogle Scholar
  2. 2.
    L’Hote CG, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304:417–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Gong SG. Isoforms of receptors of fibroblast growth factors. J Cell Physiol. 2014;229:1887–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta. 1823;2012:850–60.Google Scholar
  7. 7.
    Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci. 2015;55:663–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:103–19.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Castellano E, Downward J. RAS interaction with PI3K: more than just another effector pathway. Gene Cancer. 2011;2:261–74.CrossRefGoogle Scholar
  10. 10.
    Yoshimura N, Sano H, Hashiramoto A, Yamada R, Nakajima H, Kondo M, et al. The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. Clin Immunol Immunopathol. 1998;89:28–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Li F, Zhai YP, Tang YM, Wang LP, Wan PJ. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chrom Cancer. 2012;51:890–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68:2340–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Rosty C, Aubriot MH, Cappellen D, Bourdin J, Cartier I, Thiery JP, et al. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol Cancer. 2005;4:15.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hernandez S, de Muga S, Agell L, Juanpere N, Esgueva R, Lorente JA, et al. FGFR3 mutations in prostate cancer: association with low-grade tumors. Mod Pathol. 2009;22:848–56.PubMedGoogle Scholar
  17. 17.
    Zaid TM, Yeung TL, Thompson MS, Leung CS, Harding T, Co NN, et al. Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin Cancer Res. 2013;19:809–20.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Kudo M, Han KH, Kokudo N, Cheng AL, Choi BI, Furuse J, et al. Liver cancer working group report. Jpn J Clin Oncol. 2010;40 Suppl 1:i19–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou L, Wei B, Xing C, Xie H, Yu X, Wu L, et al. Polymorphism in 3′-untranslated region of toll-like receptor 4 gene is associated with protection from hepatitis B virus recurrence after liver transplantation. Transpl Infect Dis. 2011;13:250–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng AL, Shen YC, Zhu AX. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma. Oncology. 2011;81:372–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8:292–301.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Desnoyers LR, Pai R, Ferrando RE, Hotzel K, Le T, Ross J, et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene. 2008;27:85–97.CrossRefPubMedGoogle Scholar
  25. 25.
    Mas VR, Maluf DG, Archer KJ, Yanek KC, Fisher RA. Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation. 2007;84:1262–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505:97–102.CrossRefPubMedGoogle Scholar
  27. 27.
    Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 2008;14:6146–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim KB, Chesney J, Robinson D, Gardner H, Shi MM, Kirkwood JM. Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res. 2011;17:7451–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Kanai F, Yoshida H, Tateishi R, Sato S, Kawabe T, Obi S, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67:315–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16:311–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Udler MS, Meyer KB, Pooley KA, Karlins E, Struewing JP, Zhang J, et al. FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. Hum Mol Genet. 2009;18:1692–703.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    FitzGerald LM, Karlins E, Karyadi DM, Kwon EM, Koopmeiners JS, Stanford JL, et al. Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatic Dis. 2009;12:192–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Ansell A, Farnebo L, Grenman R, Roberg K, Thunell LK. Polymorphism of FGFR4 in cancer development and sensitivity to cisplatin and radiation in head and neck cancer. Oral Oncol. 2009;45:23–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Haiyang Xie
    • 1
  • Chunyang Xing
    • 1
  • Bajin Wei
    • 1
  • Xiao Xu
    • 1
  • Liming Wu
    • 1
  • Jian Wu
    • 1
  • Leiming Chen
    • 1
  • Guoqiang Cao
    • 1
  • Hai Chen
    • 1
  • Xueqin Meng
    • 1
  • Shengyong Yin
    • 1
  • Lin Zhou
    • 1
  • Shusen Zheng
    • 1
  1. 1.Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of MedicineHangzhouChina

Personalised recommendations