Advertisement

Tumor Biology

, Volume 36, Issue 9, pp 6589–6602 | Cite as

Current position of TNF-α in melanomagenesis

  • Iuliana Nenu
  • Diana Tudor
  • Adriana Gabriela Filip
  • Ioana Baldea
Review

Abstract

Melanoma is one of the most heterogeneous and immunogenic forms of cancer. Both tumor and stroma cells synthesize many cytokines involved in rapid development and metastasis. One of these cytokines from the tumor milieu is tumor necrosis factor-alpha (TNF-α), which seems to have an intricate role in melanomagenesis. Initially, it was found that TNF-α can induce apoptosis of tumor cells through both extrinsic and intrinsic pathways, in contrast with later studies that revealed its protumoral activity. TNF-α is involved in inflammation, inducing the secretion of survival molecules like antiapoptotic proteins, proangiogenetic factors and metastasis markers. Although there are many therapeutic strategies against melanoma, the prognosis of advanced stages remains poor, due to several tumor resistance mechanisms. TNF seems to be a negative prognostic factor in melanoma surgery and correlates with chemotherapy resistance. However, high intratumoral levels of TNF-α might be beneficial for immunotherapy. Researchers may redirect their studies in the future by double activating of the proinflammatory molecule TNF-α and the immune cells in order to obtain an antitumoral response in metastatic melanoma.

Keywords

Cutaneous melanoma Inflammation Immunotherapy TNF-α 

Notes

Acknowledgments

The authors are grateful to “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, for supporting their work through an internal grant program as stated in contract no. 1493/4/28.01.2014. The research was partially funded by POSDRU grant no 159/1.5/S/138776 with title: “Model colaborativ institutional pentru translatarea cercetarii stiintifice biomedicale in practica clinica—TRANSCENT”

Conflicts of interest

The authors declare that they do not have any conflict of interest.

References

  1. 1.
    Mantovani A, Garlanda C, Allavena P. Molecular pathways and targets in cancer-related inflammation. Ann Med. 2010;42(3):161–70. doi: 10.3109/07853890903405753.PubMedCrossRefGoogle Scholar
  2. 2.
    Green AC, Williams GM, Logan V, Strutton GM. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol. 2011;29(3):257–63. doi: 10.1200/JCO.2010.28.7078.PubMedCrossRefGoogle Scholar
  3. 3.
    Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res. 2011;24(5):879–97. doi: 10.1111/j.1755-148X.2011.00880.x.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Slominski AT, Carlson AJ. Melanoma resistance: a bright future for academicians and a challenge for patient advocates. Mayo Clin Proc. 2014;89(4):429–33. doi: 10.1016/j.mayocp.2014.02.009.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;16, e2734. doi: 10.1371/journal.pone.0002734.CrossRefGoogle Scholar
  6. 6.
    Madhunapantula SV, Mosca PJ, Robertson GP. The Akt signaling pathway: an emerging therapeutic target in malignant melanoma. Cancer Biol Ther. 2011;12:1032–49. doi: 10.4161/cbt.12.12.18442.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kortylewski M, Jove R, Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005;24(2):315–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 10.1056/NEJMoa1003466.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203:883–95.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kottschade LA, Suman VJ, Perez DG, et al. A randomized phase 2 study of temozolomide and Bevacizumab or nab-paclitaxel, carboplatin, and Bevacizumab in patients with unresectable stage IV melanoma: a north central cancer treatment group study, N0775. Cancer. 2013;119(3):586–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Enninga EAL, Holtan SJ, Creedon DJ, et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc. 2014;89(4):520–35.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bates MD, Quenby S, Takakuwa K, Johnson PM, Vince GS. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum Reprod. 2002;17(9):2439–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci. 2010;67(10):1567–79. doi: 10.1007/s00018-010-0283-0.PubMedCrossRefGoogle Scholar
  14. 14.
    Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A. 2011;108(26):10662–7. doi: 10.1073/pnas.1100994108.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78. doi: 10.1016/j.cell.2012.04.042.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65. doi: 10.1158/0008-5472.CAN-10-3323.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen ZW, Qian JY, Ma JY, Chang SF, Yun H, Jin H, et al. TNF-α-induced cardiomyocyte apoptosis contributes to cardiac dysfunction after coronary microembolization in mini-pigs. J Cell Mol Med. 2014;18(10):1953–63. doi: 10.1111/jcmm.12342.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Eberle T, Doganci B, Krämer H, Fechir M, Wagner, et al. Mechanical but not painful electrical stimuli trigger TNF alpha release in human skin. Exp Neurol. 2010;221(1):246–50. doi: 10.1016/j.expneurol.2009.11.008.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu J, Jiang L, Liu Y, Qian W, Liu J, et al. MAPK and NF-κB pathways are involved in bisphenol a-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation. 2015;38(2):637–48. doi: 10.1007/s10753-014-9971-5.PubMedCrossRefGoogle Scholar
  20. 20.
    Kanczkowski W, Zacharowski K, Wirth MP, Ehrhart-Bornstein M, Bornstein SR. Differential expression and action of toll-like receptors in human adrenocortical cells. Mol Cell Endocrinol. 2009;300(1–2):57–65. doi: 10.1016/j.mce.2008.10.028.PubMedCrossRefGoogle Scholar
  21. 21.
    Fernández-Real JM, Vendrell J, García I, Ricart W, Vallès M. Structural damage in diabetic nephropathy is associated with TNF-α system activity. Acta Diabetol. 2012;49(4):301–5. doi: 10.1007/s00592-011-0349-y.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang JD, Patel MB, Griffiths R, Dolber PC, Ruiz P, Sparks MA, et al. Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J Clin Invest. 2014;124(5):2198–203. doi: 10.1172/JCI61368.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000;275(7):4858–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66(8):1403–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72(9):3666–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mueller MM. Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer. 2006;42:735–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, et al. TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun. 2014;5:4944. doi: 10.1038/ncomms5944.PubMedCrossRefGoogle Scholar
  29. 29.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81(4):495–504.PubMedCrossRefGoogle Scholar
  30. 30.
    Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50(3):184–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Rundhaug JE, Fischer SM. Molecular mechanisms of mouse skin tumor promotion. Cancers (Basel). 2010;2(2):436–82. doi: 10.3390/cancers2020436.CrossRefGoogle Scholar
  32. 32.
    Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:4461–6.CrossRefGoogle Scholar
  33. 33.
    Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996;84(2):299–308.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou J, Yuen NK, Zhan Q, Velazquez EF, Murphy GF, et al. Immunity to the melanoma inhibitor of apoptosis protein (ML-IAP; livin) in patients with malignant melanoma. Cancer Immunol Immunother. 2012;61(5):655–65. doi: 10.1007/s00262-011-1124-1.PubMedCrossRefGoogle Scholar
  35. 35.
    Tian F, Lu JJ, Wang L, Li L, Yang J, et al. Expression of c-FLIP in malignant melanoma, and its relationship with the clinicopathological features of the disease. Clin Exp Dermatol. 2012;37(3):259–65. doi: 10.1111/j.1365-2230.2011.04238.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25(6):280–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Williams JA, Thomas AM, Li G, Kong B, Zhan L, et al. Tissue specific induction of p62/Sqstm1 by farnesoid X receptor. PLoS One. 2012;7(8), e43961. doi: 10.1371/journal.pone.0043961.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cao Y, Luo JL, Karin M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A. 2007;104(40):15852–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yang J, Pan WH, Clawson GA, Richmond A. Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth. Cancer Res. 2007;67(7):3127–34.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gu L, Zhu N, Findley HW, Woods WG, Zhou M. Identification and characterization of the IKKalpha promoter: positive and negative regulation by ETS-1 and p53, respectively. J Biol Chem. 2004;279:52141–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Wellbrock C, Hurlstone A. BRAF as therapeutic target in melanoma. Biochem Pharmacol. 2010;80(5):561–7. doi: 10.1016/j.bcp.2010.03.019.PubMedCrossRefGoogle Scholar
  43. 43.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84. doi: 10.1016/j.bbamcr.2006.10.001.PubMedCrossRefGoogle Scholar
  44. 44.
    Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013;19(11):1401–9. doi: 10.1038/nm.3392.PubMedCrossRefGoogle Scholar
  45. 45.
    Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 2007;67(1):122–9. doi: 10.1158/0008-5472.CAN-06-1880.PubMedCrossRefGoogle Scholar
  46. 46.
    Castelli C, Sensi M, Lupetti R, Mortarini R, Panceri P, et al. Expression of interleukin 1 alpha, interleukin 6, and tumor necrosis factor alpha genes in human melanoma clones is associated with that of mutated N-RAS oncogene. Cancer Res. 1994;54(17):4785–90.PubMedGoogle Scholar
  47. 47.
    Han YP, Tuan TL, Wu H, Hughes M, Garner WL. TNF-α stimulates activation of pro-MMP2 in human skin through NF-κB mediated induction of MT1-MMP. J Cell Sci. 2001;114(Pt 1):131–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhang JY, Adams AE, Ridky TW, Tao S, Khavari PA. Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia. Cancer Res. 2007;67(8):3827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706. doi: 10.1016/j.cell.2009.10.014.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002;21(13):2000–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, et al. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene. 2004;23(20):3550–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Alshamsan A, Hamdy S, Haddadi A, Samuel J, El-Kadi AO, Uludağ H, et al. STAT3 knockdown in B16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl Oncol. 2011;4(3):178–88.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809. doi: 10.1038/nrc2734.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843–50. doi: 10.1038/nature05660.PubMedCrossRefGoogle Scholar
  56. 56.
    Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Investig Dermatol. 2012;132(7):1901–7. doi: 10.1038/jid.2011.476.PubMedCrossRefGoogle Scholar
  57. 57.
    Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–228.PubMedCrossRefGoogle Scholar
  58. 58.
    Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol. 2013;88(1):76–83.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 2012;25(1):14–27. doi: 10.1111/j.1755-148X.2011.00898.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Utikal J, Schadendorf D, Ugurel S. Serologic and immunohistochemical prognostic biomarkers of cutaneous malignancies. Arch Dermatol Res. 2007;298(10):469–77. doi: 10.1007/s00403-006-0726-5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Slominski A, Wortsman J, Luger T, Paus T, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.PubMedGoogle Scholar
  62. 62.
    Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34(6):827–84. doi: 10.1210/er.2012-1092.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 2009;66(9):1493–506. doi: 10.1007/s00018-009-8703-8.PubMedCrossRefGoogle Scholar
  65. 65.
    Baldea Ioana. Melanocyte pygmentation—friend or foe on the route to melanoma, breakthroughs in melanoma research, Dr Yohei Tanaka (Ed.), ISBN: 978-953-307-291-3, In Tech. 2011. doi: 10.5772/20157. Available from: http://www.intechopen.com/books/breakthroughs-in-melanoma-research/melanocyte-pygmentation-friend-or-foe-on-the-route-to-melanoma.
  66. 66.
    Slominski A, Ermak G, Wortsman J. Modification of melanogenesis in cultured human melanoma cells. In Vitro Cell Dev Biol Anim. 1999;35(10):564–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis–controversies and new concepts. Exp Dermatol. 2008;17(5):395–404. doi: 10.1111/j.1600-0625.2007.00675.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Maddodi N, Setaluri V. Prognostic significance of melanoma differentiation and trans-differentiation. Cancers (Basel). 2010;2(2):989–99. doi: 10.3390/cancers2020989.CrossRefGoogle Scholar
  69. 69.
    Slominski A, Paus R, Mihm MC. Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: selective review and hypothesis. Anticancer Res. 1998;18(5B):3709–15.PubMedGoogle Scholar
  70. 70.
    Slominski A, Zbytek B, Slominski R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer. 2009;124(6):1470–7. doi: 10.1002/ijc.24005.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, et al. What’s the use of generating melanin? Exp Dermatol. 1999;8(2):153–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Brożyna AA, Jóźwicki W, Carlson JA, Slominski AT. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Pathol. 2013;44(10):2071–4. doi: 10.1016/j.humpath.2013.02.022.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mitra D, Luo X, Morgan A, et al. A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background. Nature. 2012;491(7424):449–53. doi: 10.1038/nature11624.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119(3):651–65. doi: 10.1182/blood-2011-04-325225.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Roberts NJ, Zhou S, Diaz Jr LA, Holdhoff M. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget. 2011;2(10):739–51.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yuan J, Horvitz HR. A first insight into the molecular mechanisms of apoptosis. Cell. 2004;116(2 Suppl):S53–6. 1 p following S59.PubMedCrossRefGoogle Scholar
  77. 77.
    Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol. 2008;9(5):378–90. doi: 10.1038/nrm2393.PubMedCrossRefGoogle Scholar
  78. 78.
    Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 2011;1807(6):735–45. doi: 10.1016/j.bbabio.2011.03.010.PubMedCrossRefGoogle Scholar
  79. 79.
    Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000;407:789–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Naudé PJ, den Boer JA, Luiten PG, Eisel UL. Tumor necrosis factor receptor cross-talk. FEBS J. 2011;278(6):888–98. doi: 10.1111/j.1742-4658.2011.08017.x.PubMedCrossRefGoogle Scholar
  81. 81.
    Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell. 2009;138(5):838–54. doi: 10.1016/j.cell.2009.08.021.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Brenner D, Mak TW. Mitochondrial cell death effectors. Curr Opin Cell Biol. 2009;21(6):871–7. doi: 10.1016/j.ceb.2009.09.004.PubMedCrossRefGoogle Scholar
  83. 83.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–19.PubMedCrossRefGoogle Scholar
  84. 84.
    Pradelli LA, Bénéteau M, Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci. 2010;67(10):1589–97. doi: 10.1007/s00018-010-0285-y.PubMedCrossRefGoogle Scholar
  85. 85.
    Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 1999;18(54):7719–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res. 2003;283(1):1–16.PubMedCrossRefGoogle Scholar
  87. 87.
    Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757(9–10):1371–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Vanden Berghe T, van Loo G, Saelens X, Van Gurp M, Brouckaert G, et al. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem. 2004;279(9):7925–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Holler N, Zaru R, Micheau O, Thome M, Attinger A, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Harper N, Hughes M, MacFarlane M, Cohen GM. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem. 2003;278(28):25534–41.PubMedCrossRefGoogle Scholar
  91. 91.
    Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem. 2004;279(11):10822–8.PubMedCrossRefGoogle Scholar
  92. 92.
    He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A. 2011;108(50):20054–9. doi: 10.1073/pnas.1116302108.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Balch CM, Soong S, Ross MI, Urist MM, Karakousis CP, et al. Long-term results of a multi-institutional randomized trial comparing prognostic factors and surgical results for intermediate thickness melanomas (1.0 to 4.0 mm). Intergroup melanoma surgical trial. Ann Surg Oncol. 2000;7(2):87–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Tarhini AA, Lin Y, Yeku O, LaFramboise WA, Ashraf M, et al. A four-marker signature of TNF-RII, TGF-α, TIMP-1 and CRP is prognostic of worse survival in high-risk surgically resected melanoma. J Transl Med. 2014;12:19. doi: 10.1186/1479-5876-12-19.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19. doi: 10.1056/NEJMoa1002011.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. BRIM-3 study group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16. doi: 10.1056/NEJMoa1103782.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Smith MP, Sanchez-Laorden B, O’Brien K, Brunton H, Ferguson J, et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα. Cancer Discov. 2014;4(10):1214–29. doi: 10.1158/2159-8290.CD-13-1007.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fruehauf J, Lutzky J, McDermott D, Brown CK, Meric JB, et al. Multicenter, phase II study of axitinib, a selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, in patients with metastatic melanoma. Clin Cancer Res. 2011;17(23):7462–9. doi: 10.1158/1078-0432.CCR-11-0534.PubMedCrossRefGoogle Scholar
  99. 99.
    Cornett WR, McCall LM, Petersen RP, Ross MI, Briele HA, et al. American college of surgeons oncology group trial Z0020. Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American college of surgeons oncology group trial Z0020. J Clin Oncol. 2006;24(25):4196–201.PubMedCrossRefGoogle Scholar
  100. 100.
    Deroose JP, Burger JW, van Geel AN, den Bakker MA, de Jong JS, et al. C. Radiotherapy for soft tissue sarcomas after isolated limb perfusion and surgical resection: essential for local control in all patients? Ann Surg Oncol. 2011;18(2):321–7. doi: 10.1245/s10434-010-1400-x.PubMedCrossRefGoogle Scholar
  101. 101.
    Deroose JP, Grünhagen DJ, van Geel AN, de Wilt JH, Eggermont AM, Verhoef C. Long-term outcome of isolated limb perfusion with tumour necrosis factor-α for patients with melanoma in-transit metastases. Br J Surg. 2011;98(11):1573–80. doi: 10.1002/bjs.7621.PubMedCrossRefGoogle Scholar
  102. 102.
    Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 2012;19(12):2003–14. doi: 10.1038/cdd.2012.90. Epub 2012 Jul 20.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014;21(9):1350–64. doi: 10.1038/cdd.2014.81.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ivanov VN, Zhou H, Hei TK. Sequential treatment by ionizing radiation and sodium arsenite dramatically accelerates TRAIL-mediated apoptosis of human melanoma cells. Cancer Res. 2007;67(11):5397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Voigt S, Philipp S, Davarnia P, Winoto-Morbach S, Röder C, et al. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells. BMC Cancer. 2014;14:74. doi: 10.1186/1471-2407-14-74.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hersey P, Zhang XD. How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer. 2001;1(2):142–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Mauceri HJ, Beckett MA, Liang H, Sutton HG, Pitroda S, et al. Translational strategies exploiting TNF-alpha that sensitize tumors to radiation therapy. Cancer Gene Ther. 2009;16(4):373–81. doi: 10.1038/cgt.2008.86.PubMedCrossRefGoogle Scholar
  108. 108.
    Baldea I, Filip AG. Photodynamic therapy in melanoma—an update. J Physiol Pharmacol. 2012;63:109–18.PubMedGoogle Scholar
  109. 109.
    Barge J, Decréau R, Julliard M, Hubaud JC, Sabatier AS, Grob JJ, et al. Killing efficacy of a new silicon phthalocyanine in human melanoma cells treated with photodynamic therapy by early activation of mitochondrion-mediated apoptosis. Exp Dermatol. 2004;13(1):33–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Davids LM, Kleemann B, Kacerovská D, Pizinger K, Kidson SH. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J Photochem Photobiol B. 2008;91(2–3):67–76. doi: 10.1016/j.jphotobiol.2008.01.011.PubMedCrossRefGoogle Scholar
  111. 111.
    Calzavara-Pinton PG, Venturini M, Sala R. Photodynamic therapy: update 2006. Part 2: clinical results. J Eur Acad Dermatol Venereol. 2007;21(4):439–51.PubMedGoogle Scholar
  112. 112.
    Nenu I, Popescu T, Aldea MD, Craciun L, Olteanu D, Tatomir C, et al. Metformin associated with photodynamic therapy—a novel oncological direction. J Photochem Photobiol B. 2014;138:80–91. doi: 10.1016/j.jphotobiol.2014.04.027.PubMedCrossRefGoogle Scholar
  113. 113.
    Yurkovetsky ZR, Kirkwood JM, Edington HD, Marrangoni AM, Velikokhatnaya L, et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin Cancer Res. 2007;13(8):2422–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Blay JY, Favrot MC, Negrier S, Combaret V, Chouaib S, Mercatello A, et al. Correlation between clinical response to interleukin 2 therapy and sustained production of tumor necrosis factor. Cancer Res. 1990;50(8):2371–4.PubMedGoogle Scholar
  115. 115.
    Foletto MC, Haas SE. Cutaneous melanoma: new advances in treatment. An Bras Dermatol. 2014;89(2):301–10.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Christ O, Seiter S, Matzku S, Burger C, Zöller M. Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin Cancer Res. 2001;7(4):985–98.PubMedGoogle Scholar
  117. 117.
    Schwager K, Hemmerle T, Aebischer D, Neri D. The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J Investig Dermatol. 2013;133(3):751–8. doi: 10.1038/jid.2012.376.PubMedCrossRefGoogle Scholar
  118. 118.
    Pretto F, Elia G, Castioni N, Neri D. Preclinical evaluation of IL2-based immunocytokines supports their use in combination with dacarbazine, paclitaxel and TNF-based immunotherapy. Cancer Immunol Immunother. 2014;63(9):901–10. doi: 10.1007/s00262-014-1562-7.PubMedCrossRefGoogle Scholar
  119. 119.
    Weide B, Eigentler TK, Pflugfelder A, Leiter U, Meier F, Bauer J, et al. Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother. 2011;60(4):487–93. doi: 10.1007/s00262-010-0957-3.PubMedCrossRefGoogle Scholar
  120. 120.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364(22):2119–27. doi: 10.1056/NEJMoa1012863.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. doi: 10.1056/NEJMoa1302369.PubMedCrossRefGoogle Scholar
  122. 122.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.PubMedCrossRefGoogle Scholar
  123. 123.
    Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity. 2004;21(3):401–13.PubMedCrossRefGoogle Scholar
  124. 124.
    Binder DC, Schreiber H. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors—letter. Cancer Res. 2014;74(2):632. doi: 10.1158/0008-5472.CAN-13-2216. discussion 635. Epub 2014 Jan 9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Parmiani G, Pilla L, Corti A, Doglioni C, Cimminiello C, et al. A pilot phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncoimmunology. 2014;3(11), e963406.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Iuliana Nenu
    • 1
  • Diana Tudor
    • 1
  • Adriana Gabriela Filip
    • 1
  • Ioana Baldea
    • 1
  1. 1.Department of PhysiologyUniversity of Medicine and PharmacyCluj-NapocaRomania

Personalised recommendations