Skip to main content
Log in

Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention

  • Research Article
  • Published:
Tumor Biology

Abstract

Cancer cells are characterized by increased production of reactive oxygen species (ROS) and an altered redox environment as compared to normal cells. Continuous accumulation of ROS triggers oxidative stress leading to hyper-activation of signaling pathways that promote cell proliferation, survival, and metabolic adaptation to the tumor microenvironment. Therefore, antioxidants are proposed to contribute to cancer prevention. Protein kinase C (PKC) is a crucial regulator of diverse cellular processes and contributes to cancer progression. The activation of PKC is partially dependent on ROS signaling. In the present study, cancer preventive activity of natural flavonoid quercetin is analyzed in ascite cells of Dalton’s lymphoma-bearing mice. The total ROS level and activity of PKC were downregulated after quercetin treatment in lymphoma-bearing mice. Quercetin modulates the expression of almost all isozymes of classical, novel, and atypical PKC as well as downregulates the level and expression of PKCα. Further, quercetin improves apoptotic potential, as observed by the levels of caspase 3, caspase 9, PARP, PKCδ, and nuclear condensation. Additionally, quercetin reduces cell survival and promotes death receptor-mediated apoptosis via differential localization of the TNFR1 level in ascite cells. The overall result suggests the cancer preventive activity of quercetin via the induction of apoptosis and modulates PKC signaling with the reduction of oxidative stress in ascite cells of lymphoma-bearing mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013;19:4309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.

    Article  CAS  PubMed  Google Scholar 

  3. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  PubMed  Google Scholar 

  4. Ivanova D, Bakalova RLD, et al. The impact of reactive oxygen species. Clin Adv Med Exp. 2013;22:899–908.

    Google Scholar 

  5. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66:3663–73.

    Article  CAS  PubMed  Google Scholar 

  6. Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 2008;10:1883–94.

    Article  CAS  PubMed  Google Scholar 

  7. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach. Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  8. Coleman WB, Tsongalis GJ. Molecular mechanisms of human carcinogenesis. Cancer: cell structures, carcinogens and genomic instability. EXS. 2006;96:321–49.

  9. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25:695–705.

    Article  CAS  PubMed  Google Scholar 

  10. Gopalakrishna R, Gundimeda U. Antioxidant regulation of protein kinase C in cancer prevention. J Nutr. 2002;132:3819–23.

    Google Scholar 

  11. Trachootham D, Lu W, Ogasawara MA, Nilsa RDV, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou F, Shen Q, Claret FX. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol. 2013;94:423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol. 2013;271:49–63.

    Article  CAS  PubMed  Google Scholar 

  14. Samoylenko A, Hossain J, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal. 2013;19:2157–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol. 2014;92:90–101.

  16. Hu CT, Wu JR, Cheng CC, Wang S, Wang HT, Lee MC, et al. Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clin Exp Metastasis. 2011;28:851–63.

    Article  CAS  PubMed  Google Scholar 

  17. Aspects D, Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, et al. Redox control of protein kinase C : cell-and disease-specific aspects. Antioxid Redox Signal. 2010;13:1051–85.

    Article  Google Scholar 

  18. Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol. 2010;5:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frey RS, Gao X, Javaid K, Siddiqui SS, Rahman A, Malik AB. Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. J Biol Chem. 2006;281:16128–38.

    Article  CAS  PubMed  Google Scholar 

  20. Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol Endocrinol Metab. 2005;288:405–11.

    Article  Google Scholar 

  21. Caino MC, Meshki J, Kazanietz MG. Hallmarks for senescence in carcinogenesis: novel signaling players. Apoptosis. 2009;14:392–408.

    Article  CAS  PubMed  Google Scholar 

  22. Mishra S, Vinayak M. Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leuk Lymphoma. 2011;52:2155–61.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SK, Shehzad A, Jung JC, Sonn JK, Lee JT, Park JW, et al. Protein kinase Cα protects against multidrug resistance in human colon cancer cells. Mol Cells. 2012;34:61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konopatskaya O, Poole AW. Protein kinase Calpha: disease regulator and therapeutic target. Trends Pharmacol Sci. 2010;31:8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu TT, Hsieh YH, Hsieh YS, Liu JY. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem. 2008;103:9–20.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao M, Xia L, Chen GQ. Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp. 2012;60:361–72.

    Article  CAS  Google Scholar 

  27. Reyland ME. Protein kinase C δ and apoptosis. Biochem Soc Trans. 2007;35:1001–4.

    Article  CAS  PubMed  Google Scholar 

  28. Ghayur BT, Hugunin M, Talanian RV, Ratnofsky S, Quinlan C, Emoto Y, et al. Proteolytic activation of protein kinase C δ by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med. 1996;184:2399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanthasamy AG, Kitazawa M, Yang Y, Anantharam V, Kanthasamy A. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): implications for neurodegeneration in Parkinson’ s disease. Mol Brain. 2008;12:1–15. doi:10.1186/1756-6606-1-12.

  30. Oh J, Chun K, Joo S, Oh Y, Lee S. Caspase-3-dependent protein kinase C delta activity is required for the progression of Ginsenoside-Rh2-induced apoptosis in SK-HEP-1 cells. Cancer Lett. 2005;230:228–38.

  31. Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16:139–44.

    Article  CAS  PubMed  Google Scholar 

  32. Pobezinskaya YL, Liu Z. The role of TRADD in death receptor signaling. Cell Cycle. 2012;11:871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11:372–7.

    Article  CAS  PubMed  Google Scholar 

  34. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117:244–79.

    Article  CAS  PubMed  Google Scholar 

  35. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-κB pathway. FEBS J. 2011;278:862–76.

    Article  CAS  PubMed  Google Scholar 

  36. Maurya AK and Vinayak M. Quercetin regresses Dalton’s lymphoma growth via suppression of PI3K/AKT signaling leading to up regulation of p53 and decrease in energy metabolism. Nutr Cancer. 2014;67:354–63.

  37. Hayashi A. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern Med Rev. 2006;5:546–52.

    Google Scholar 

  38. Goldie H, Dingman FM. Growth characteristics of free tumor cells transferred serially in the peritoneal fluid of the mouse. Cancer Res. 1951;11:73–80.

    CAS  PubMed  Google Scholar 

  39. Aita K, Irie H, Tanuma Y, Toida S, Okuma Y, Mori S, et al. Apoptosis in murine lymphoid organs following intraperitoneal administration of dimethyl sulfoxide (DMSO). Exp Mol Pathol. 2005;79:265–71.

    Article  CAS  PubMed  Google Scholar 

  40. Chen N, Ma WY, Huang C, Dong Z. Translocation of protein kinase C and protein kinase C to membrane is required for ultraviolet B-induced activation of mitogen-activated protein kinases and apoptosis. J Biol Chem. 1999;274:15389–94.

    Article  CAS  PubMed  Google Scholar 

  41. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, et al. Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol. 2005;289:C1466–75.

    Article  CAS  PubMed  Google Scholar 

  42. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 2005;7:1–7.

    Google Scholar 

  43. Das L, Vinayak M. Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer. PLoS ONE. 2014;9:1–12.

    Google Scholar 

  44. Mishra S, Vinayak M. Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism. Nutr Cancer. 2014;66:675–81.

    Article  CAS  PubMed  Google Scholar 

  45. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutcher I, Webb PR, Anderson NG. The isoform-specific regulation of apoptosis by protein kinase C. Cell Mol Life Sci. 2003;60:1061–70.

    Article  CAS  PubMed  Google Scholar 

  47. Mauro A. PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J Cell Sci. 2002;115:3587–99.

    Article  CAS  PubMed  Google Scholar 

  48. Martiny-Baron G, Fabbro D. Classical PKC isoforms in cancer. Pharmacol Res. 2007;55:477–86.

    Article  CAS  PubMed  Google Scholar 

  49. Lahn M, Sundell K, Gleave M, Ladan F, Su C, Li S, et al. Protein kinase C-α in prostate cancer. BJU Int. 2004;93:1076–81.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang XM, Chen J, Xia YG, Xu Q. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta. Cancer Chemother Pharmacol. 2005;55:251–62.

    Article  CAS  PubMed  Google Scholar 

  51. Gamet-Payrastre L, Manenti S, Gratacap M-P, Tulliez J, Chap H, Payrastre B. Flavonoids and the inhibition of PKC and PI 3-kinase. Gen Pharmacol Vasc Syst. 1999;32:279–86.

    Article  CAS  Google Scholar 

  52. Granado-serrano AB, Martín MA, Bravo L, Goya L. Time-course regulation of quercetin on cell survival / proliferation pathways in human hepatoma cells. Mol Nutr Food Res. 2008;52:457–64.

    Article  CAS  PubMed  Google Scholar 

  53. Wu CH, Wu CF, Huang HW, Jao YC, Yen GC. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells. Mol Nutr Food Res. 2009;53:984–95.

    Article  CAS  PubMed  Google Scholar 

  54. Ruvolo PP, Deng X, Carr BK, May WS, Biol WSJ, Reh H. A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem. 1998;273:25436–42.

    Article  CAS  PubMed  Google Scholar 

  55. Popla YG, Murray NR, Velasco MA, Gatalica Z, Fields AP. Elevated protein kinase CβII is an early promotive event in colon carcinogenesis. Cancer Res. 2001;2:1375–81.

    Google Scholar 

  56. Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, et al. Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem. 2004;279:47720–5.

    Article  CAS  PubMed  Google Scholar 

  57. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol. 2003;285:334–42.

    Article  Google Scholar 

  58. Kim JH, Kim JH, Ohba M, Suh PG, Ryu SH. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Czeta activation. Mol Cell Biol. 2005;25:3194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    Article  CAS  PubMed  Google Scholar 

  60. Micheau O, Boveresses C, Epalinges C. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Z, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell. 1996;87:565–76.

    Article  CAS  PubMed  Google Scholar 

  62. D’Alessio A, Kluger MS, Li JH, Al-Lamki R, Bradley JR, Pober JS. Targeting of tumor necrosis factor receptor 1 to low density plasma membrane domains in human endothelial cells. J Biol Chem. 2010;285:23868–79.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rivas MA, Carnevale RP, Proietti CJ, Rosemblit C, et al. TNF α acting on TNFR1 promotes breast cancer growth via p42/p44 MAPK, JNK, Akt and NF-kB-dependant pathways. Exp Cell Res. 2008;314:509–29.

    Article  CAS  PubMed  Google Scholar 

  64. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23:1625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brachert WS, Tchikov V, Neumeyer J, Jakob M, Morbach SW, Feindt JF, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity. 2004;21:415–28.

    Article  Google Scholar 

  66. Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK, Zhao WJ. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int. 2015;80:60–71.

    Article  CAS  PubMed  Google Scholar 

  67. Basu A, Woolard MD, Johnson CL. Involvement of protein kinase C-delta in DNA damage-induced apoptosis. Cell Death Differ. 2001;8:899–908.

    Article  CAS  PubMed  Google Scholar 

  68. Hazeki K, Inoue K, Nigorikawa K, Hazeki O. Negative regulation of class IA phosphoinositide 3-kinase by protein kinase Cdelta limits Fcgamma receptor-mediated phagocytosis in macrophages. J Biochem. 2009;145:87–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by University Grants Commission (UGC), India. AKM thanks the Council of Scientific and Industrial Research (CSIR), India, for Senior Research Fellowship (CSIR Award No. File No: 09/013(0338)/2010-EMR-I).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula Vinayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Vinayak, M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumor Biol. 36, 8913–8924 (2015). https://doi.org/10.1007/s13277-015-3634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3634-5

Keywords

Navigation