Tumor Biology

, Volume 36, Issue 11, pp 8579–8584 | Cite as

MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA

  • Zhi-cai Shi
  • Xue-rong Chu
  • Yun-gang Wu
  • Jin-hui Wu
  • Chun-wen Lu
  • Run-xiao Lü
  • Mu-chen Ding
  • Ning-fang Mao
Research Article

Abstract

Osteosarcoma has become one of the most common primary malignant bone tumors in childhood and adult. Numerous studies have demonstrated that aberrant microRNA (miRNA) expression is involved in human disease including cancer. To date, the potential miRNAs regulating osteosarcoma growth and progression are not fully identified yet. Herein, we showed that miR-375 was frequently downregulated in osteosarcoma tissue and cell lines compared to normal human colon tissues. Overexpression of miR-375 resulted in decreased expression of PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) at both mRNA and protein levels. We found that miR-375 overexpression markedly suppressed cell proliferation in vitro. And inhibition of miR-375 promotes osteosarcoma growth. Mechanistic studies showed that PIK3CA was a potential target of miR-375 and it mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. Taken together, our results demonstrate that miR-375 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA in osteosarcoma.

Keywords

Osteosarcoma Cell proliferation MicroRNA PIK3CA 

Notes

Conflicts of interest

None

References

  1. 1.
    Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531–43. doi: 10.1002/cncr.24121.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther. 2011;11(8):1223–32. doi: 10.1586/era.11.94.CrossRefPubMedGoogle Scholar
  3. 3.
    Wu CL, Tsai HC, Chen ZW, Wu CM, Li TM, Fong YC, et al. Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma. Cell Signal. 2013;25(12):2812–22. doi: 10.1016/j.cellsig.2013.09.005.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108(12):3646–53. doi: 10.1182/blood-2006-01-030015.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. doi: 10.1038/nrc1840.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi: 10.1016/j.ydbio.2006.08.028.CrossRefPubMedGoogle Scholar
  8. 8.
    Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol J Int Soc Oncodevelo Biol Med. 2013;34(4):2093–8. doi: 10.1007/s13277-013-0940-7.CrossRefGoogle Scholar
  9. 9.
    Nugent M. MicroRNA function and dysregulation in bone tumors: the evidence to date. Cancer Manag Res. 2014;6:15–25. doi: 10.2147/CMAR.S53928.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang Z, Cai H, Lin L, Tang M, Cai H. Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr Blood Cancer. 2014;61(2):206–10. doi: 10.1002/pbc.24763.CrossRefPubMedGoogle Scholar
  11. 11.
    Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, et al. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am J Trans Res. 2014;6(5):604–13.Google Scholar
  12. 12.
    Luo J, Wu J, Li Z, Qin H, Wang B, Wong TS, et al. miR-375 suppresses IGF1R expression and contributes to inhibition of cell progression in laryngeal squamous cell carcinoma. BioMed Res Int. 2014;2014:374598. doi: 10.1155/2014/374598.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Yoon AJ, Wang S, Shen J, Robine N, Philipone E, Oster MW, et al. Prognostic value of miR-375 and miR-214-3p in early stage oral squamous cell carcinoma. Am J Trans Res. 2014;6(5):580–92.Google Scholar
  14. 14.
    Shen Y, Zhou J, Li Y, Ye F, Wan X, Lu W et al. miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PLoS ONE. 2014;9(10):e109299. doi: 10.1371/journal.pone.0109299.
  15. 15.
    Li H, Yang BB. Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2. Oncotarget. 2012;3(12):1653–68.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Han SB, Shin YJ, Hyon JY, Wee WR. Cytotoxicity of voriconazole on cultured human corneal endothelial cells. Antimicrob Agents Chemother. 2011;55(10):4519–23. doi: 10.1128/AAC.00569-11.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Siow MY, Ng LP, Chong VK, Jamaludin M, Abraham MT, Abdul Rahman ZA, et al. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis. 2014;20(4):345–51. doi: 10.1111/odi.12118.CrossRefPubMedGoogle Scholar
  18. 18.
    Luo D, Wilson JM, Harvel N, Liu J, Pei L, Huang S, et al. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J Transl Med. 2013;11:57. doi: 10.1186/1479-5876-11-57.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MA, et al. MicroRNA expression signatures during malignant progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Prev Res. 2013;6(3):196–205. doi: 10.1158/1940-6207.CAPR-12-0276.CrossRefGoogle Scholar
  20. 20.
    Chang C, Shi H, Wang C, Wang J, Geng N, Jiang X, et al. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531(2):204–8. doi: 10.1016/j.neulet.2012.10.021.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu Y, Deng Y, Yan X, Zhou T. Targeting miR-375 in gastric cancer. Expert Opin Ther Targets. 2011;15(8):961–72. doi: 10.1517/14728222.2011.581232.CrossRefPubMedGoogle Scholar
  22. 22.
    Chang Y, Yan W, He X, Zhang L, Li C, Huang H, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 2012;143(1):177–87. doi: 10.1053/j.gastro.2012.04.009. e8.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu Y, Xing R, Zhang X, Dong W, Zhang J, Yan Z, et al. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair. 2013;12(9):741–50. doi: 10.1016/j.dnarep.2013.06.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Y, Tang Q, Li M, Jiang S, Wang X, et al. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 2014;444:199–204.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhi-cai Shi
    • 1
  • Xue-rong Chu
    • 2
  • Yun-gang Wu
    • 1
  • Jin-hui Wu
    • 1
  • Chun-wen Lu
    • 1
  • Run-xiao Lü
    • 1
  • Mu-chen Ding
    • 1
  • Ning-fang Mao
    • 1
  1. 1.Department of Orthopedics, Changhai HospitalThe Second Military Medical UniversityShanghaiChina
  2. 2.Department of Pharmacy323 Hospital of People’s Liberation ArmyXi’anChina

Personalised recommendations