Tumor Biology

, Volume 36, Issue 11, pp 8389–8398 | Cite as

miR-106a* inhibits the proliferation of renal carcinoma cells by targeting IRS-2

  • Yadong Ma
  • Hongyi Zhang
  • Xiaolong He
  • Hongxiong Song
  • Yayong Qiang
  • Yi Li
  • Jixue Gao
  • Ziming Wang
Research Article

Abstract

MicroRNAs play critical roles in the development and progression of human cancers. Although it has been reported that miR-106a* is downregulated in follicular lymphoma, its role in renal cell carcinoma (RCC) remains unknown. This study investigated the expression and role of miR-106a* in human RCC. Our results showed that the miR-106a* expression decreased dramatically in clinical RCC tissues and cell lines. In vitro, overexpression of miR-106a* suppressed RCC cell proliferation and S/G2 transition, whereas inhibition of miR-106a* promoted cell proliferation and S/G2 transition. It was also found that miR-106a* expression was inversely correlated with the expression of insulin receptor substrate 2 (IRS-2). IRS-2 was determined to be a direct target of miR-106a* by a luciferase reporter assay. Importantly, silencing IRS-2 resulted in the same biologic effects as those of miR-106a* overexpression in RCC cells, including inhibition of RCC cell proliferation and triggering of S/G2 cell cycle arrest with inhibition of the PI3K/Akt signaling pathway. These results indicate that miR-106a* affects RCC progression by targeting IRS-2 with suppression of the PI3K/Akt signaling pathway in RCC cells. The findings suggest miR-106a* as a novel strategy for RCC treatment.

Keywords

Renal cell carcinoma miR-106a* Proliferation Insulin receptor substrates 2 PI3K/Akt signaling pathway 

Notes

Acknowledgments

The authors would like to thank Professor Qi Chen for polishing the language in this manuscript.

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63(1):11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Yang FQ, Yang FP, Li W, Liu M, Wang GC, Che JP, et al. Foxl1 inhibits tumor invasion and predicts outcome in human renal cancer. Int J Clin Exp Pathol. 2013;7(1):110–22.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Russo P. Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol. 2000;27(2):160–76.PubMedGoogle Scholar
  4. 4.
    Motzer RJ, Molina AM. Targeting renal cell carcinoma. J Clin Oncol. 2009;27(20):3274–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang H, Cheng Y, Jia C, Yu S, Xiao Y, Chen J. MicroRNA-29s could target AKT2 to inhibit gastric cancer cells invasion ability. Med Oncol. 2015;32(1):342.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang Z, Zheng W, Hai J. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med Oncol. 2014;31(6):984.CrossRefPubMedGoogle Scholar
  7. 7.
    Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Su Z, Ni L, Yu W, Yu Z, Chen D, Zhang E, et al. MicroRNA-451a is associated with cell proliferation, migration and apoptosis in renal cell carcinoma. Mol Med Rep. 2015;11(3):2248–54.PubMedGoogle Scholar
  9. 9.
    Chen Z, Tang ZY, He Y, Liu LF, Li DJ, Chen X. miRNA-205 is a candidate tumor suppressor that targets ZEB2 in renal cell carcinoma. Oncol Res Treat. 2014;37(11):658–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. 2012;97(4):586–94.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem. 2003;278(28):25323–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27(4):361–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Gibson SL, Ma Z, Shaw LM. Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle. 2007;6(6):631–7.CrossRefPubMedGoogle Scholar
  14. 14.
    White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhao XM, Chen J, Yang L, Luo X, Xu LL, Liu DX, et al. Association between IRS-2 G1057D polymorphism and risk of gastric cancer. World J Gastrointest Oncol. 2012;4(1):9–15.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol. 2006;26(24):9302–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu G, Lai P, Liu M, Xu L, Guo Z, Liu H, et al. miR-203a regulates proliferation, migration, and apoptosis by targeting glycogen synthase kinase-3β in human renal cell carcinoma. Tumour Biol. 2014;35(11):11443–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Gopalan V, Pillai S, Ebrahimi F, Salajegheh A, Lam TC, Le TK, et al. Regulation of microRNA-1288 in colorectal cancer: altered expression and its clinicopathological significance. Mol Carcinog. 2013;53:E36–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Lang Q, Ling C. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun. 2012;426(2):247–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Poudel S, Song J, Jin EJ, Song K. Sulfuretin-induced miR-30C selectively downregulates cyclin D1 and D2 and triggers cell death in human cancer cell lines. Biochem Biophys Res Commun. 2013;431(3):572–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis related microRNAs in hepatocellular carcinoma. Hepatology. 2008;47(3):897–907.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, et al. miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci. 2014;59(8):1743–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48(6):2047–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Rossi JJ. New hope for a microRNA therapy for liver cancer. Cell. 2009;137(6):990–2.CrossRefPubMedGoogle Scholar
  25. 25.
    Schnarr B, Strunz K, Ohsam J, Benner A, Wacker J, Mayer D. Downregulation of insulin-like growth factor-I receptor and insulin receptor substrate-1 expression in advanced human breast cancer. Int J Cancer. 2000;89(6):506–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, et al. Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol. 2007;60(6):633–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Han CH, Cho JY, Moon JT, Kim HJ, Kim SK, Shin DH, et al. Clinical significance of insulin receptor substrate-I down-regulation in non-small cell lung cancer. Oncol Rep. 2006;16(6):1205–10.PubMedGoogle Scholar
  28. 28.
    Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal. 2009;7:14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kwon J, Stephan S, Mukhopadhyay A, Muders MH, Dutta SK, Lau JS, et al. Insulin receptor substrate-2 mediated insulin-like growth factor-I receptor overexpression in pancreatic adenocarcinoma through protein kinase Cdelta. Cancer Res. 2009;69(4):1350–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Byron S, Horwitz K, Richer J, Lange C, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Day E, Poulogiannis G, McCaughan F, Mulholland S, Arends MJ, Ibrahim AE, et al. IRS-2 is a candidate driver oncogene on 13q34 in colorectal cancer. Int J Exp Pathol. 2013;94(3):203–11.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chan BT, Lee AV. Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2008;13(4):415–22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Porter HA, Perry A, Kingsley C, Tran NL, Keegan AD. IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 2013;338(2):239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gao L, Wang X, Wang X, Zhang L, Qiang C, Chang S, et al. IGF-1R, a target of let-7b, mediates crosstalk between IRS- 2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma. Oncotarget. 2014;5(9):2562–74.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Boissan M, Beurel E, Wendum D, Rey C, Lecluse Y, Housset C, et al. Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am J Pathol. 2005;167(3):869–77.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ. Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem. 2005;280(3):2282–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Ando K, Fujita T. Role of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in the development of hypertensive organ damage. Clin Exp Nephrol. 2004;8(3):178–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Neid M, Datta K, Stephan S, Khanna I, Pal S, Shaw L, et al. Role of insulin receptor substrates and protein kinase C-zeta in vascular permeability factor/vascular endothelial growth factor expression in pancreatic cancer cells. J Biol Chem. 2004;279(6):3941–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Nagle JA, Ma Z, Byrne MA, White MF, Shaw LM. Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol. 2004;24(22):9726–35.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim B, Feldman EL. Insulin receptor substrate (IRS)-2, not IRS-1, protects human neuroblastoma cells against apoptosis. Apoptosis. 2009;14(5):665–73.CrossRefPubMedGoogle Scholar
  41. 41.
    Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S, Schiff SC, et al. Irs2 inactivation suppresses tumor progression in Pten +/- mice. Am J Pathol. 2009;174(1):276–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yadong Ma
    • 1
    • 2
  • Hongyi Zhang
    • 2
  • Xiaolong He
    • 2
  • Hongxiong Song
    • 2
  • Yayong Qiang
    • 2
  • Yi Li
    • 2
  • Jixue Gao
    • 2
  • Ziming Wang
    • 1
  1. 1.Department of Urology, the Second Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Urology, Affiliated HospitalYan’an UniversityYan’an CityChina

Personalised recommendations