Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 4913–4921 | Cite as

Gene polymorphisms in the folate metabolism and their association with MTX-related adverse events in the treatment of ALL

  • Yang Chen
  • Zuojun Shen
Review

Abstract

The antifolate drug methotrexate (MTX) is widely used in the treatment of various neoplastic diseases, including acute lymphoblastic leukemia (ALL). MTX significantly increases cure rates and improves patients’ prognosis. Despite that it achieved remarkable clinical success, a large number of patients still suffer from treatment toxicities or side effects. Even to this date, chemotherapeutic regiments have not been personalized because of interindividual differences that affect MTX response, especially polymorphisms in key genes. The pharmacological pathway of MTX in cells is useful to identify gene polymorphisms that influence the process of treatment. The aim of this review was to discuss the gene polymorphisms of drug-metabolizing enzymes in the MTX pathway and their toxicities on ALL treatment.

Keywords

Gene polymorphism ALL MTX Toxicity 

Notes

Conflicts of interest

There are no conflicts of interest.

References

  1. 1.
    Ansari M, Krajinovic M. Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Curr Opin Pediatr. 2007;19:15–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Kodidela S, Suresh Chandra P, Dubashi B. Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: why still at the bench level? Eur J Clin Pharmacol. 2014;70:253–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Kapoor G, Sinha R, Abedin S. Experience with high dose methotrexate therapy in childhood acute lymphoblastic leukemia in a tertiary care cancer centre of a developing country. Pediatr Blood Cancer. 2012;59:448–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Salazar J, Altés A, del Río E, et al. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates even-free survival in childhood acute lympho-blastic leukaemia. Pharmacogenomics J. 2012;12:379–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Niedzielska E, Węcławek-Tompol J, Matkowska-Kocjan A, et al. The influence of genetic RFC1, MS and MTHFR polymorphisms on the risk of acute lymphoblastic leukemia relapse in children and the adverse effects of methotrexate. Adv Clin Exp Med. 2013;22:579–84.PubMedGoogle Scholar
  8. 8.
    Cheok MH, Evans WE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer. 2006;6:117–29.CrossRefPubMedGoogle Scholar
  9. 9.
    Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121:5145–53.CrossRefPubMedGoogle Scholar
  10. 10.
    McGuire JJ, Bertino JR. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981;38(Spec No(Pt 1)):19–48.CrossRefPubMedGoogle Scholar
  11. 11.
    Organista-Nava J, Gómez-Gómez Y, Saavedra-Herrera MV, et al. Polymorphisms of the gamma-glutamyl hydrolase gene and risk of relapse to acute lymphoblastic leukemia in Mexico. Leuk Res. 2010;34:728–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia-Bournissen F, Moghrabi A, Krajinovic M. Therapeutic responses in childhood acute lymphoblastic leukemia (ALL) and haplotypes of gamma glutamyl hydrolase (GGH) gene. Leuk Res. 2007;31:1023–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Goodey NM, Benkovic SJ, et al. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc Natl Acad Sci U S A. 2006;103:15753–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krajinovic M, Moghrabi A. Pharmacogenetics of methotrexate. Pharmacogenomics. 2004;5:819–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A. 1998;95:13217–20.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ansari M, St-Onge G, Krajinovic M. Pharmacogenomics of acute lymphoblastic leukemia. Med Sci (Paris). 2007;23:961–7.CrossRefGoogle Scholar
  17. 17.
    Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146:489–503.CrossRefPubMedGoogle Scholar
  18. 18.
    Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev. 2007;26:183–201.CrossRefPubMedGoogle Scholar
  19. 19.
    Chiabai MA, Lins TC, Pogue R, et al. Population analysis of pharmacogenetic polymorphisms related to acute lymphoblastic leukemia drug treatment. Dis Markers. 2012;32:247–53.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chiusolo P, Giammarco S, Bellesi S, et al. The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue. Cancer Chemother Pharmacol. 2012;69:691–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Gregers J, Christensen IJ, Dalhoff K, et al. The association of reduced folate carrier 80G > A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115:4671–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    He HR, Liu P, He GH, et al. Association between reduced folate carrier G80A polymorphism and methotrexate toxicity in childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Lymphoma. 2014;55:2793–800.CrossRefPubMedGoogle Scholar
  24. 24.
    de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005;106:717–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Rocha JC, Cheng C, Liu W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005;105:4752–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang L, Tissing WJ, de Jonge R, et al. Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia. 2008;22:1798–800.CrossRefPubMedGoogle Scholar
  27. 27.
    Kishi S, Griener J, Cheng C, et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol. 2003;21:3084–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, et al. Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol. 2007;86:609–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Shimasaki N, Mori T, Torii C, et al. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2008;30:347–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Faganel Kotnik B, Grabnar I, Bohanec Grabar P, et al. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67:993–1006.CrossRefPubMedGoogle Scholar
  31. 31.
    Shimasaki N, Mori T, Samejima H, et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2006;28:64–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Imanishi H, Okamura N, Yagi M, et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet. 2007;52:166–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang HN, He XL, Wang C, et al. Impact of SLCO1B1 521T > C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer. 2014;61:2203–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Trevin˜o LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27:5972–8.CrossRefGoogle Scholar
  35. 35.
    Zhang H, He X, Li J, et al. SLCO1B1c. 521T > C gene polymorphisms are associated with high-dose methotrexate pharmacokinetics and clinical outcome of pediatric acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2014;52:770–6. Chinese.PubMedGoogle Scholar
  36. 36.
    Lopez-Lopez E, Ballesteros J, Piñan MA, et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics. 2013;23:53–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57:612–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121:898–904.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu Y, Yin Y, Sheng Q, et al. Association of ABCC2 -24C > T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS One. 2014;9, e82681.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rau T, Erney B, Göres R, et al. High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80:468–76.CrossRefPubMedGoogle Scholar
  41. 41.
    Sharifi MJ, Bahoush G, Zaker F, et al. Association of -24CT, 1249GA, and 3972CT ABCC2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014;31:169–77.CrossRefPubMedGoogle Scholar
  42. 42.
    El Mesallamy HO, Rashed WM, Hamdy NM, et al. High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next? J Cancer Res Clin Oncol. 2014;140:1359–65.CrossRefPubMedGoogle Scholar
  43. 43.
    Ansari M, Sauty G, Labuda M, et al. Polymorphism in multidrug resistance-associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2012;12:386–94.CrossRefPubMedGoogle Scholar
  44. 44.
    Ansari M, Sauty G, Labuda M, et al. Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood. 2009;114:1383–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15:1479–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Liani E, Rothem L, Bunni MA, et al. Loss of folylpolygamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer. 2003;103:587–99.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu SG, Gao C, Li ZG, et al. Correlation analysis of FPGS rs10760502G > a polymorphism with prognosis and MTX-related toxicity in pediatric B-cell acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014;22:291–7. doi: 10.7534/j.issn.1009-2137. 2014.02.006. Chinese.PubMedGoogle Scholar
  48. 48.
    Liu SG, Gao C, Zhang RD, et al. FPGS rs1544105 polymorphism is associated with treatment outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Cancer Cell Int. 2013;13:107.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koomdee N, Hongeng S, Apibal S, et al. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13:3461–4.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen X, Wen F, Yue L, et al. Genetic polymorphism of γ-glutamyl hydrolase in Chinese acute leukemia children and identification of a novel double nonsynonymous mutation. Pediatr Hematol Oncol. 2012;29:303–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Xu X, Gammon MD, Wetmur JG, et al. A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr. 2007;85:1098–102.PubMedGoogle Scholar
  52. 52.
    Gómez-Gómez Y, Organista-Nava J, Saavedra-Herrera MV, et al. Survival and risk of relapse of acute lymphoblastic leukemia in a Mexican population is affected by dihydrofolate reductase gene polymorphisms. Exp Ther Med. 2012;3:665–72.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ongaro A, De Mattei M, Della Porta MG, et al. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica. 2009;94:1391–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Danenberg PV. Thymidylate synthetase—a target enzyme in cancer chemotherapy. Biochim Biophys Acta. 1977;473:73–92.PubMedGoogle Scholar
  55. 55.
    Mandola MV, Stoehlmacher J, Muller-Weeks S, et al. A novel single nucleotide polymorphism within the 5’ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 2003;63:2898–904.PubMedGoogle Scholar
  56. 56.
    Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood. 2002;99:3786–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Erčulj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53:1096–104.CrossRefPubMedGoogle Scholar
  58. 58.
    Krajinovic M, Lemieux-Blanchard E, Chiasson S, et al. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2004;4:66–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Skibola CF, Smith MT, Kane E, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96:12810–5.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Narayanan S, McConnell J, Little J, et al. Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev. 2004;13:1436–43.PubMedGoogle Scholar
  61. 61.
    Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Haase R, Elsner K, Merkel N, et al. High dose methotrexate treatment in childhood ALL: pilot study on the impact of the MTHFR 677C > T and 1298A > C polymorphisms on MTX-related toxicity. Klin Padiatr. 2012;224:156–9.CrossRefPubMedGoogle Scholar
  63. 63.
    EL-Khodary NM, El-Haggar SM, Eid MA, et al. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol. 2012;29:2053–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Chiusolo P, Reddiconto G, Casorelli I, et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol. 2002;13:1915–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol. 2012;33:1445–54.CrossRefPubMedGoogle Scholar
  66. 66.
    Ruiz-Argüelles GJ, Coconi-Linares LN, Garcés-Eisele J, et al. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico. Hematology. 2007;12:387–91.CrossRefPubMedGoogle Scholar
  67. 67.
    Krull KR, Brouwers P, Jain N, et al. Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. J Pediatr. 2008;152:101–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Liu JX, Chen JP, Tan W, et al. Association between mthfr gene polymorphisms and toxicity of HDMTX chemotherapy in acute lymphocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008;16:488–92. Chinese.PubMedGoogle Scholar
  69. 69.
    Tantawy AA, El-Bostany EA, Adly AA, et al. Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis. 2010;21:28–34.CrossRefPubMedGoogle Scholar
  70. 70.
    Karathanasis NV, Stiakaki E, Goulielmos GN, et al. The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in Cretan children with acute lymphoblastic leukemia. Genet Test Mol Biomarkers. 2011;15:5–10.CrossRefPubMedGoogle Scholar
  71. 71.
    Liu SG, Li ZG, Cui L, et al. Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma. 2011;52:1030–40.CrossRefPubMedGoogle Scholar
  72. 72.
    D'Angelo V, Ramaglia M, Iannotta A, et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol. 2011;68:1339–46.CrossRefPubMedGoogle Scholar
  73. 73.
    Li TY, Wang B, Xu KK, et al. Polymorphism C677T in methylenetetrahydrofolate reductase gene and its relationship to methotrexate-induced toxicities of childhood acute lymphoblastic leukemia. Acta Univ Med Nanjing (Nat Sci). 2010;30:386-9–404. Chinese.Google Scholar
  74. 74.
    Chiusolo P, Reddiconto G, Farina G, et al. MTHFR polymorphisms’ influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk Res. 2007;31:1669–74.CrossRefPubMedGoogle Scholar
  75. 75.
    Ayad MW, El Naggar AA, El Naggar M. MTHFR C677T polymorphism: association with lymphoid neoplasm and effect on methotrexate therapy. Eur J Haematol. 2014;93:63–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Seidemann K, Book M, Zimmermann M, et al. MTHFR 677 (C– > T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol. 2006;85:291–300.CrossRefPubMedGoogle Scholar
  77. 77.
    Liao QC, Li XL, Liu ST, et al. Association between the methylenetetrahydrofolate reductase gene polymorphisms and haplotype with toxicity response of high dose methotrexate chemotherapy. Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33:735–9. Chinese.PubMedGoogle Scholar
  78. 78.
    Hum DW, Bell AW, Rozen R, et al. Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. J Biol Chem. 1988;263:15946–50.PubMedGoogle Scholar
  79. 79.
    Hol FA, van der Put NM, Geurds MP, et al. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin Genet. 1998;53:119–25.CrossRefPubMedGoogle Scholar
  80. 80.
    Leclerc D, Campeau E, Goyette P, et al. A. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet. 1996;5:1867–74.CrossRefPubMedGoogle Scholar
  81. 81.
    Brown CA, McKinney KQ, Kaufman JS, et al. A common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease. J Cardiovasc Risk. 2000;7:197–200.CrossRefPubMedGoogle Scholar
  82. 82.
    Costea I, Moghrabi A, Krajinovic M. The influence of cyclin D1 (CCND1) 870A > G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2003;13:577–80.CrossRefPubMedGoogle Scholar
  83. 83.
    Hosokawa Y, Tu T, Tahara H, et al. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and parathyroid adenomas and identification of a new cyclin D1 gene polymorphism. Cancer Lett. 1995;93:165–70.CrossRefPubMedGoogle Scholar
  84. 84.
    Costea I, Moghrabi A, Laverdiere C, et al. Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica. 2006;91:1113–6.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Centre of Clinical LaboratoryAnhui Provincial Hospital Affiliated of Anhui Medical UniversityHefeiChina

Personalised recommendations