Tumor Biology

, Volume 36, Issue 12, pp 9159–9170 | Cite as

Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer

  • Juliana Garcia de Oliveira
  • Ana Flávia Teixeira Rossi
  • Daniela Manchini Nizato
  • Aline Cristina Targa Cadamuro
  • Yvana Cristina Jorge
  • Marina Curado Valsechi
  • Larissa Paola Rodrigues Venâncio
  • Paula Rahal
  • Érika Cristina Pavarino
  • Eny Maria Goloni-Bertollo
  • Ana Elizabete Silva
Research Article


Functional polymorphisms in promoter regions can produce changes in the affinity of transcription factors, thus altering the messenger ribonucleic acid (mRNA) expression levels of inflammatory cytokines associated with the risk of cancer development. The goal of this study was to evaluate the influence that polymorphisms in the cytokine genes known as TNF-α-308 G/A (rs1800629), TNF-α-857 C/T (rs1799724), IL-8-251 T/A (rs4073), IL-8-845 T/C (rs2227532), and IL-10-592 C/A (rs1800872) have on changes to mRNA expression levels and on the risks of chronic gastritis (CG) and gastric cancer (GC). A sample of 723 individuals was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Relative mRNA expression levels were measured using quantitative real-time PCR (qPCR). Polymorphisms TNF-α-308 G/A and IL-8-251 A/T were not associated with risks of these gastric lesions. However, TNF-α-857 C/T, IL-8-845 T/C, and IL-10-592 C/A were found to be associated with a higher risk of GC, and IL-10-592 C/A was found to be associated with a higher risk of CG. The relative mRNA expression levels (RQ) of TNF-α, IL-8, and IL-10 were markedly downregulated in the CG group (median RQs = 0.128, 0.247, and 0.614, respectively), while the RQ levels of TNF-α in the GC group were upregulated (RQ = 2.749), but were basal for IL-8 (RQ = 1.053) and downregulated for IL-10 (RQ = 0.179). When the groups were stratified according to wild-type and polymorphic alleles, only for IL-8-845 T/C the polymorphic allele was found to influence the expression levels of this cytokine. IL-8-845 C allele carriers were significantly upregulated in both groups (GC and CG; RQ = 3.138 and 2.181, respectively) when compared to TT homozygotes (RQ = −0.407 and 0.165, respectively). In silico analysis in the IL-8 promoter region revealed that the presence of the variant C allele in position -845 is responsible for the presence of the binding sites for two transcription factors (REL and CREB1), which are involved in increased gene expression. Polymorphic alleles were not shown to have any effect on the expression levels of TNF-α and IL-10. Taken together, our findings provide evidence for an association of TNF-α-857 C/T, IL-8-845 T/C, and IL-10-592 C/A with a higher risk of gastric cancer and also demonstrate the influence that the polymorphic C allele of IL-8-845 has on changes to the gene expression levels of this cytokine.


Cytokines Gastric cancer Chronic gastritis Gene polymorphisms Gene expression 





Chronic gastritis


Complementary deoxyribonucleic acid


Confidence interval


Ethylenediaminetetraacetic acid


Gastric cancer










Messenger ribonucleic acid


Odds ratio


Polymerase chain reaction


Restriction fragment length polymorphism


Relative quantification


Single-nucleotide polymorphism


Tumor necrosis factor alpha



The authors are grateful to Joice Matos Biselli-Périco for help with the gene expression figures and also to José Antonio Cordeiro for support with the statistical analysis. This study was partially funded by the São Paulo Research Foundation (FAPESP), No. 2010/00507-0, and also by the Brazilian National Council for Scientific and Technological Development (CNPq), No. 471908/2010-0.

Conflicts of interest


Authors’ contributions

AES and JGO conceived and designed the experiments. JGO, AFT, DMN, and ACTC performed the experiments. JGO, AES, and ACTC analyzed and interpreted the data. YCJ, MCV, PR, EMGB, ECP, and AES contributed the set of samples, reagents, materials, and analysis tools. JGO and AES drafted the manuscript and revised it carefully. All authors have approved the final version of manuscript to be published.


  1. 1.
    El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404(6776):398–402.CrossRefPubMedGoogle Scholar
  2. 2.
    El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology. 2003;124(5):1193–201.CrossRefPubMedGoogle Scholar
  3. 3.
    Chung HW, Lim JB. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol. 2014;20(7):1667–80.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu MS, Chen CJ, Lin JT. Genetic alterations and polymorphisms in gastric cancer. J Formos Med Assoc. 2003;102(7):447–58.PubMedGoogle Scholar
  5. 5.
    Wu MS, Wu CY, Chen CJ, Lin MT, Shun CT, Lin JT. Interleukin-10 genotypes associate with the risk of gastric carcinoma in Taiwanese Chinese. Int J Cancer. 2003;104(5):617–23.CrossRefPubMedGoogle Scholar
  6. 6.
    de Oliveira JG, Rossi AF, Nizato DM, Miyasaki K, Silva AE. Profiles of gene polymorphisms in cytokines and toll-like receptors with higher risk for gastric cancer. Dig Dis Sci. 2013;58(4):978–88.Google Scholar
  7. 7.
    Higuchi T, Seki N, Kamizono S, Yamada A, Kimura A, Kato H, et al. Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens. 1998;51(6):605–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Havemose-Poulsen A, Sørensen LK, Stoltze K, Bendtzen K, Holmstrup P. Cytokine profiles in peripheral blood and whole blood cell cultures associated with aggressive periodontitis, juvenile idiopathic arthritis, and rheumatoid arthritis. J Periodontol. 2005;76(12):2276–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Li M, Wang Y, Gu Y. Quantitative assessment of the influence of tumor necrosis factor alpha polymorphism with gastritis and gastric cancer risk. Tumour Biol. 2014;35(2):1495–502.CrossRefPubMedGoogle Scholar
  10. 10.
    Liang WB, Lv ML, Su XW, Gao LB, Fang WL, Luo HB, et al. Association of tumor necrosis factor gene polymorphisms with susceptibility to dilated cardiomyopathy in a Han Chinese population. DNA Cell Biol. 2010;29(10):625–8.CrossRefPubMedGoogle Scholar
  11. 11.
    El Sissy MH, El Sissy AH, Elanwary S: Tumor necrosis factor-α -308G/A gene polymorphism in Egyptian children with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 2014.Google Scholar
  12. 12.
    Remick DG. Interleukin-8. Crit Care Med. 2005;33(12 Suppl):S466–467.CrossRefPubMedGoogle Scholar
  13. 13.
    Garza-González E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, et al. Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer. 2005;114(2):237–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Kamali-Sarvestani E, Aliparasti MR, Atefi S. Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma. 2007;54(6):484–9.PubMedGoogle Scholar
  15. 15.
    Liu S, Yin C, Chu N, Han L, Li C. IL-8-251T/A and IL-12B 1188A/C polymorphisms are associated with gout in a Chinese male population. Scand J Rheumatol. 2013;42(2):150–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Slattery ML, Herrick JS, Torres-Mejia G, John EM, Giuliano AR, Hines LM, et al.: Genetic variants in interleukin genes are associated with breast cancer risk and survival in a genetically admixed population: the Breast Cancer Health Disparities Study. Carcinogenesis 2014.Google Scholar
  17. 17.
    Hull J, Ackerman H, Isles K, Usen S, Pinder M, Thomson A, et al. Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet. 2001;69(2):413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax. 2000;55(12):1023–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dan H, Liu W, Zhou Y, Wang J, Chen Q, Zeng X. Association of interleukin-8 gene polymorphisms and haplotypes with oral lichen planus in a Chinese population. Inflammation. 2010;33(2):76–81.CrossRefPubMedGoogle Scholar
  20. 20.
    de Oliveira JG, Rossi AF, Nizato DM, Miyasaki K, Silva AE. Profiles of gene polymorphisms in cytokines and Toll-like receptors with higher risk for gastric cancer. Dig Dis Sci. 2013;58(4):978–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Maeda H, Okabayashi T, Nishimori I, Sugimoto T, Namikawa T, Dabanaka K, et al. Clinicopathologic features of adenocarcinoma at the gastric cardia: is it different from distal cancer of the stomach? J Am Coll Surg. 2008;206(2):306–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Perez-Perez GI, Garza-Gonzalez E, Portal C, Olivares AZ. Role of cytokine polymorphisms in the risk of distal gastric cancer development. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1869–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Tindall EA, Severi G, Hoang HN, Ma CS, Fernandez P, Southey MC, et al. Comprehensive analysis of the cytokine-rich chromosome 5q31.1 region suggests a role for IL-4 gene variants in prostate cancer risk. Carcinogenesis. 2010;31(10):1748–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Laddha NC, Dwivedi M, Gani AR, Mansuri MS, Begum R. Tumor necrosis factor B (TNFB) genetic variants and its increased expression are associated with vitiligo susceptibility. PLoS ONE. 2013;8(11):e81736.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leite MS, Giacomin LC, Piranda DN, Festa-Vasconcellos JS, Indio-do-Brasil V, Koifman S, et al. Epidermal growth factor receptor gene polymorphisms are associated with prognostic features of breast cancer. BMC Cancer. 2014;14:190.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Oliveira JG, Duarte MC, Silva AE. IL-1ra anti-inflammatory cytokine polymorphism is associated with risk of gastric cancer and chronic gastritis in a Brazilian population, but the TNF-β pro-inflammatory cytokine is not. Mol Biol Rep. 2012;39(7):7617–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney system. International workshop on the histopathology of gastritis, Houston 1994. Am J Surg Pathol. 1996;20(10):1161–81.CrossRefPubMedGoogle Scholar
  28. 28.
    LAUREN P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  29. 29.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Achyut BR, Tripathi P, Ghoshal UC, Moorchung N, Mittal B. Interleukin-10 (-819 C/T) and tumor necrosis factor-alpha (-308 G/A) gene variants influence gastritis and lymphoid follicle development. Dig Dis Sci. 2008;53(3):622–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Sugimoto M, Furuta T, Shirai N, Nakamura A, Xiao F, Kajimura M, et al. Different effects of polymorphisms of tumor necrosis factor-alpha and interleukin-1 beta on development of peptic ulcer and gastric cancer. J Gastroenterol Hepatol. 2007;22(1):51–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Taguchi A, Ohmiya N, Shirai K, Mabuchi N, Itoh A, Hirooka Y, et al. Interleukin-8 promoter polymorphism increases the risk of atrophic gastritis and gastric cancer in Japan. Cancer Epidemiol Biomarkers Prev. 2005;14(11 Pt 1):2487–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Wei YS, Kuang XH, Zhu YH, Liang WB, Yang ZH, Tai SH, et al. Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma. Tissue Antigens. 2007;70(1):12–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Duarte MC, Babeto E, Leite KR, Miyazaki K, Borim AA, Rahal P, et al. Expression of TERT in precancerous gastric lesions compared to gastric cancer. Braz J Med Biol Res. 2011;44(2):100–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Sørensen LK, Havemose-Poulsen A, Bendtzen K, Holmstrup P. Aggressive periodontitis and chronic arthritis: blood mononuclear cell gene expression and plasma protein levels of cytokines and cytokine inhibitors. J Periodontol. 2009;80(2):282–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004;32(Database issue):D91–94.Google Scholar
  38. 38.
    Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H et al: JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014;42(Database issue):D142–47.Google Scholar
  39. 39.
    Maroco J: Análise Estatística de dados—com utilização do SPSS. Lisboa-Portugal; 2007.Google Scholar
  40. 40.
    Zhang J, Dou C, Song Y, Ji C, Gu S, Xie Y, et al. Polymorphisms of tumor necrosis factor-alpha are associated with increased susceptibility to gastric cancer: a meta-analysis. J Hum Genet. 2008;53(6):479–89.CrossRefPubMedGoogle Scholar
  41. 41.
    Puthothu B, Bierbaum S, Kopp MV, Forster J, Heinze J, Weckmann M, et al. Association of TNF-alpha with severe respiratory syncytial virus infection and bronchial asthma. Pediatr Allergy Immunol. 2009;20(2):157–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Jin L, Sturgis EM, Zhang Y, Huang Z, Song X, Li C, et al. Association of tumor necrosis factor-alpha promoter variants with risk of HPV-associated oral squamous cell carcinoma. Mol Cancer. 2013;12:80.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu F, Zhao H, Tian X, Meng X. Association between tumor necrosis factor-α rs1800629 polymorphism and risk of gastric cancer: a meta-analysis. Tumour Biol. 2014;35(3):1799–803.CrossRefPubMedGoogle Scholar
  44. 44.
    Hong Y, Ge Z, Jing C, Shi J, Dong X, Zhou F, et al. Functional promoter -308G>A variant in tumor necrosis factor α gene is associated with risk and progression of gastric cancer in a Chinese population. PLoS ONE. 2013;8(1):e50856.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rocha GA, Guerra JB, Rocha AM, Saraiva IE, da Silva DA, de Oliveira CA, et al. IL1RN polymorphic gene and cagA-positive status independently increase the risk of noncardia gastric carcinoma. Int J Cancer. 2005;115(5):678–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Zambon CF, Basso D, Navaglia F, Belluco C, Falda A, Fogar P, et al. Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome. Cytokine. 2005;29(4):141–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Ohyama I, Ohmiya N, Niwa Y, Shirai K, Taguchi A, Itoh A, et al. The association between tumour necrosis factor-alpha gene polymorphism and the susceptibility to rugal hyperplastic gastritis and gastric carcinoma. Eur J Gastroenterol Hepatol. 2004;16(7):693–700.CrossRefPubMedGoogle Scholar
  48. 48.
    Suganuma M, Watanabe T, Yamaguchi K, Takahashi A, Fujiki H. Human gastric cancer development with TNF-α-inducing protein secreted from Helicobacter pylori. Cancer Lett. 2012;322(2):133–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhao C, Lu X, Bu X, Zhang N, Wang W. Involvement of tumor necrosis factor-alpha in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. BMC Cancer. 2010;10:419.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Goll R, Gruber F, Olsen T, Cui G, Raschpichler G, Buset M, et al. Helicobacter pylori stimulates a mixed adaptive immune response with a strong T-regulatory component in human gastric mucosa. Helicobacter. 2007;12(3):185–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Senthilkumar C, Niranjali S, Jayanthi V, Ramesh T, Devaraj H. Molecular and histological evaluation of tumor necrosis factor-alpha expression in Helicobacter pylori-mediated gastric carcinogenesis. J Cancer Res Clin Oncol. 2011;137(4):577–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Hildebrand F, Stuhrmann M, van Griensven M, Meier S, Hasenkamp S, Krettek C, et al. Association of IL-8-251A/T polymorphism with incidence of acute respiratory distress syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine. 2007;37(3):192–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SI, Flores-Gutierrez JP, Maldonado-Garza HJ, Perez-Perez GI. Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer. 2007;7:70.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Felipe AV, Silva TD, Pimenta CA, Kassab P, Forones NM. Interleukin-8 gene polymorphism and susceptibility to gastric cancer in a Brazilian population. Biol Res. 2012;45(4):369–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Lee WPTD, Lan KH, Li AF, Hsu HC, Lin EJ, Lin YP, et al. The -251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin Cancer Res. 2005;11:6431–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Hacking D, Knight JC, Rockett K, Brown H, Frampton J, Kwiatkowski DP, et al. Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease-susceptibility. Genes Immun. 2004;5(4):274–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Bhat IA, Pandith AA, Bhat BA, Naykoo NA, Qasim I, Rasool R, et al. Lack of association of a common polymorphism in the 3′ -UTR of interleukin 8 with non small cell lung cancer in Kashmir. Asian Pac J Cancer Prev. 2013;14(7):4403–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Rovin BH, Lu L, Zhang X. A novel interleukin-8 polymorphism is associated with severe systemic lupus erythematosus nephritis. Kidney Int. 2002;62(1):261–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Rayet B, Gélinas C: Aberrant rel/nfkb genes and activity in human cancer. Oncogene. 1999;18(49):6938–47.Google Scholar
  60. 60.
    Mantovani A, Bonecchi R, Locati M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol. 2006;6(12):907–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101–14. e2105.CrossRefPubMedGoogle Scholar
  62. 62.
    Aggarwal BB, Sung B. NF-κB in cancer: a matter of life and death. Cancer Discov. 2011;1(6):469–71.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.CrossRefPubMedGoogle Scholar
  64. 64.
    Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.CrossRefPubMedGoogle Scholar
  65. 65.
    Mayer TZ, Simard FA, Cloutier A, Vardhan H, Dubois CM, McDonald PP. The p38-MSK1 signaling cascade influences cytokine production through CREB and C/EBP factors in human neutrophils. J Immunol. 2013;191(8):4299–307.CrossRefPubMedGoogle Scholar
  66. 66.
    Nam YH, Min D, Park SJ, Kim KA, Lee YA, Shin MH. NF-κB and CREB are involved in IL-8 production of human neutrophils induced by Trichomonas vaginalis-derived secretory products. Korean J Parasitol. 2011;49(3):291–4.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lee JY, Kim HY, Kim KH, Kim SM, Jang MK, Park JY, et al. Association of polymorphism of IL-10 and TNF-A genes with gastric cancer in Korea. Cancer Lett. 2005;225(2):207–14.CrossRefPubMedGoogle Scholar
  68. 68.
    Scassellati C, Zanardini R, Squitti R, Bocchio-Chiavetto L, Bonvicini C, Binetti G, et al. Promoter haplotypes of interleukin-10 gene and sporadic Alzheimer’s disease. Neurosci Lett. 2004;356(2):119–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Alonso R, Suarez A, Castro P, Lacave AJ, Gutierrez C. Influence of interleukin-10 genetic polymorphism on survival rates in melanoma patients with advanced disease. Melanoma Res. 2005;15(1):53–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu Y, Wang J, He Q, Zhang JQ. The association between interleukin-10-592 polymorphism and gastric cancer risk: a meta-analysis. Med Oncol. 2011;28(1):133–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Rad R, Dossumbekova A, Neu B, Lang R, Bauer S, Saur D, et al. Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection. Gut. 2004;53(8):1082–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wang YC, Sung WW, Wu TC, Wang L, Chien WP, Cheng YW, et al. Interleukin-10 haplotype may predict survival and relapse in resected non-small cell lung cancer. PLoS ONE. 2012;7(7):e39525.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling. World J Gastroenterol. 2010;16(17):2080–93.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gorbachev AV, Fairchild RL. Regulation of chemokine expression in the tumor microenvironment. Crit Rev Immunol. 2014;34(2):103–20.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Juliana Garcia de Oliveira
    • 1
    • 2
  • Ana Flávia Teixeira Rossi
    • 1
  • Daniela Manchini Nizato
    • 3
  • Aline Cristina Targa Cadamuro
    • 1
  • Yvana Cristina Jorge
    • 1
  • Marina Curado Valsechi
    • 4
  • Larissa Paola Rodrigues Venâncio
    • 5
  • Paula Rahal
    • 4
  • Érika Cristina Pavarino
    • 3
  • Eny Maria Goloni-Bertollo
    • 3
  • Ana Elizabete Silva
    • 1
  1. 1.Cytogenetics and Molecular Biology Laboratory, Department of BiologySao Paulo State University (UNESP)São José do Rio PretoBrazil
  2. 2.Department of Graduate Studies and ResearchSacred Heart University (USC)BauruBrazil
  3. 3.Department of Genetics and Molecular BiologySão José do Rio Preto School of Medicine (FAMERP)São José do Rio PretoBrazil
  4. 4.Genomics Laboratory, Department of BiologySao Paulo State University (UNESP)São José do Rio PretoBrazil
  5. 5.Laboratory for the Study of Hemoglobin and the Genetics of Hematologic Diseases, Department of BiologySao Paulo State University (UNESP)São José do Rio PretoBrazil

Personalised recommendations