Tumor Biology

, Volume 36, Issue 11, pp 8367–8377 | Cite as

Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma

Research Article

Abstract

Intrahepatic cholangiocarcinoma is the second most common primary malignant tumor of the liver, and it originates from the intrahepatic biliary duct epithelium. Prognosis is poor due to lack of effective comprehensive treatments. In this study, we assessed the expression of Gab1, VEGFR-2, and MMP-9 in intrahepatic cholangiocarcinoma solid tumors by immunohistochemistry and determined whether their expression was associated with clinical and pathological features. We found that expression of Gab1, VEGFR-2, and MMP-9 was highly and positively correlated with each other and with lymph node metastasis and TNM stage in intrahepatic cholangiocarcinoma tissues. Interference of Gab1 and VEGFR-2 expression via siRNA in the intrahepatic cholangiocarcinoma cell line RBE resulted in decreased PI3K/Akt pathway activity. Inhibition of Gab1 and VEGFR-2 expression also caused decreased cell proliferation, cell cycle arrested in G1 phase, increased apoptosis, and decreased invasion in RBE cells. These results suggest that Gab1, VEGFR-2, and MMP-9 contribute significantly to the highly malignant behavior of intrahepatic cholangiocarcinoma. The regulation of growth, apoptosis, and invasion by Gab1 through the VEGFR-2/Gab1/PI3K/Akt signaling pathway may represent potential targets for improving the treatment of intrahepatic cholangiocarcinoma.

Keywords

Gab1 Intrahepatic cholangiocarcinoma PI3K/Akt Proliferation Apoptosis Migration 

Notes

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China [project no. 81001091].

Conflicts of interest

None.

References

  1. 1.
    Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology. 2001;33:1353–7.CrossRefPubMedGoogle Scholar
  2. 2.
    de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med. 1999;341:1368–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol. 2002;37:806–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  5. 5.
    DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nakagohri T, Asano T, Kinoshita H, Kenmochi T, Urashima T, Miura F, et al. Aggressive surgical resection for hilar-invasive and peripheral intrahepatic cholangiocarcinoma. World J Surg. 2003;27:289–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Ohtsuka M, Ito H, Kimura F, Shimizu H, Togawa A, Yoshidome H, et al. Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br J Surg. 2002;89:1525–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee MA, Woo IS, Kang JH, Hong YS, Lee KS. Epirubicin, cisplatin, and protracted infusion of 5-FU (ECF) in advanced intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol. 2004;130:346–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? J Hepatol. 2004;40:472–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T. Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene. 2003;22:1546–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Gillgrass A, Cardiff RD, Sharan N, Kannan S, Muller WJ. Epidermal growth factor receptor-dependent activation of Gab1 is involved in ErbB-2-mediated mammary tumor progression. Oncogene. 2003;22:9151–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Seiden-Long I, Navab R, Shih W, Li M, Chow J, Zhu CQ, et al. Gab1 but not Grb2 mediates tumor progression in Met overexpressing colorectal cancer cells. Carcinogenesis. 2008;29:647–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Sang H, Li T, Li H, Liu J. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma. PLoS One. 2013;8:e81347.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gu H, Neel BG. The “Gab” in signal transduction. Trends Cell Biol. 2003;13:122–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Nishida K, Hirano T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci. 2003;94:1029–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal. 2009;7:22.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–99.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;209:507–20.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laramée M, Chabot C, Cloutier M, Stenne R, Holgado-Madruga M, Wong AJ, et al. The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem. 2007;282:7758–69.CrossRefPubMedGoogle Scholar
  22. 22.
    Dance M, Montagner A, Yart A, Masri B, Audigier Y, Perret B, et al. The adaptor protein Gab1 couples the stimulation of vascular endothelial growth factor receptor-2 to the activation of phosphoinositide 3-kinase. J Biol Chem. 2006;281:23285–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Caron C, Spring K, Laramée M, Chabot C, Cloutier M, Gu H, et al. Non-redundant roles of the Gab1 and Gab2 scaffolding adapters in VEGF-mediated signalling, migration, and survival of endothelial cells. Cell Signal. 2009;21:943–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15:1953–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–76.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Heslin MJ, Yan J, Johnson MR, Weiss H, Diasio RB, Urist MM. Role of matrix metalloproteinases in colorectal carcinogenesis. Ann Surg. 2001;233:786–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Murakami Y, Uemura K, Sudo T, Hashimoto Y, Nakashima A, Kondo N, et al. Prognostic factors after surgical resection for intrahepatic, hilar, and distal cholangiocarcinoma. Ann Surg Oncol. 2011;18:651–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248:84–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Waldner MJ, Wirtz S, Jefremow A, Warntjen M, Neufert C, Atreya R, et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J Exp Med. 2010;207:2855–68.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–55.PubMedGoogle Scholar
  32. 32.
    Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, et al. The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res. 2005;65:3200–8.PubMedGoogle Scholar
  33. 33.
    Shirabe K, Shimada M, Kajiyama K, Hasegawa H, Gion T, Ikeda Y, et al. Expression of matrix metalloproteinase-9 in surgically resected intrahepatic cholangiocarcinoma. Surgery. 1999;126:842–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol. 2008;8:393–412.CrossRefPubMedGoogle Scholar
  35. 35.
    Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou F, Chang Z, Zhang L, Hong YK, Shen B, Wang B, et al. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol. 2010;177:2124–33.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia. 2003;17:995–7.CrossRefPubMedGoogle Scholar
  38. 38.
    David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 2004;10:6865–71.CrossRefPubMedGoogle Scholar
  39. 39.
    Leelawat K, Leelawat S, Narong S, Hongeng S. Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol. 2007;13:1561–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tanno S, Yanagawa N, Habiro A, Koizumi K, Nakano Y, Osanai M, et al. Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res. 2004;64:3486–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Javle MM, Yu J, Khoury T, Chadha KS, Iyer RV, Foster J, et al. Akt expression may predict favorable prognosis in cholangiocarcinoma. J Gastroenterol Hepatol. 2006;21:1744–51.CrossRefPubMedGoogle Scholar
  42. 42.
    Kiyatkin A, Aksamitiene E, Markevich NI, Borisov NM, Hoek JB, Kholodenko BN. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem. 2006;281:19925–38.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Haiquan Sang
    • 1
  • Tingting Li
    • 2
  • Hangyu Li
    • 1
  • Jingang Liu
    • 1
  1. 1.Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Clinical Genetics, Shengjing HospitalChina Medical UniversityShenyangChina

Personalised recommendations