Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8309–8316 | Cite as

miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3

  • Yi Zhang
  • Wei Huang
  • Yan Ran
  • Yan Xiong
  • Zibiao Zhong
  • Xiaoli Fan
  • Zhenghua Wang
  • Qifa Ye
Research Article

Abstract

microRNAs play an important role in the progression of hepatocellular carcinoma (HCC). In this study, we found that miR-582-5p expression was downregulated in hepatoma tissues and HCC cell lines. Upregulation of miR-582-5p reduced colony number, inhibited cellular proliferation, and arrested cell cycle in G0/G1 phase. When miR-582-5p was inhibited, the colony number was increased and cellular proliferation and cell cycle were promoted. Further studies showed that miR-582-5p regulated the progression of HCC through directly inhibiting the expression of CDK1 and AKT3, and indirectly inhibiting the expression of cyclinD1.

Keywords

Hepatocellular carcinoma miR-582-5p CDK1 AKT3 CyclinD1 

Notes

Acknowledgments

The study was supported by The Natural Science Foundation of China, No: 30371394; Natural Science Fund of Hubei Province, No: 2012FFA044; the Health Department Found of Hubei Province, No: JX6B18; Public Service Platform Construction Projects of Wuhan Technology Bureau, No: 2013060705010326.

Conflicts of interest

None.

Supplementary material

13277_2015_3582_MOESM1_ESM.doc (67 kb)
Supplementary Figure 1 miR-582-5p is downregulation in human HCC tissues. N represents non-tumor liver tissues, T represents HCC tissues. (DOC 67 kb)
13277_2015_3582_MOESM2_ESM.doc (338 kb)
Supplementary Figure 2 miR-582-5p targets CDK1 and AKT3 by binding to its 3′ UTR. Indicated HCC cells Huh-7 and Hep3B were contransfected with miR-582-5p mimic or miR-582-5p inhibitor and luciferase reporters containing the mutational miRNA target site in the 3′ UTR of CDK1 or AKT3. *p < 0.05, Error bars represent mean ± STDEV. (DOC 338 kb)
13277_2015_3582_MOESM3_ESM.doc (130 kb)
Supplementary Figure 3 miR-582-5p regulates E2F1 expression. (A) Western blot assay finds that overexpression of miR-582-5p inhibits E2F1 expression, knockdown of miR-582-5p promotes F2F1 expression in indicated cell lines. (B) Real-time PCR assay finds that overexpression of miR-582-5p inhibits E2F1 expression, knockdown of miR-582-5p promotes F2F1 expression in indicated cell lines. *p < 0.05, Error bars represent mean ± STDEV. (DOC 130 kb)

References

  1. 1.
    Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.CrossRefPubMedGoogle Scholar
  2. 2.
    Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33:2557–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6:402.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.CrossRefPubMedGoogle Scholar
  6. 6.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer. 2007;55:1–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2013;24:167–81.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY, et al. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res. 2008;14:3319–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu YH, Jiang J, Wang XJ, Zhai F, Cheng XX. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1. PLoS ONE. 2013;8:e78381.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Manning AL, Dyson NJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer. 2012;12:220–6.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Nassirpour R, Mehta PP, Yin MJ. miR-122 regulates tumorigenesis in hepatocellular carcinoma by targeting AKT3. PLoS ONE. 2013;8:e79655.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ong CS, Zhou J, Ong CN, Shen HM. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3beta-Cyclin D1 pathway. Cancer Lett. 2010;298:167–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6:11–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Shen G, Jia HY, Tai Q, Li YH, Chen DJ. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34:211–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH, et al. MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol. 2012;57:584–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi-Yanaga F, Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal. 2008;20:581–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–97.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Uchino K, Takeshita F, Takahashi RU, Kosaka N, Fujiwara K, Naruoka H, et al. Therapeutic effects of microRNA-582-5p and -3p on the inhibition of bladder cancer progression. Mol Ther J Am Soc Gene Ther. 2013;21:610–9.CrossRefGoogle Scholar
  24. 24.
    Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25:469–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu W, Ye H, Wan L, Han X, Wang G, Hu J, et al. Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo. Carcinogenesis. 2013;34:1636–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Yan GJ, Yu F, Wang B, Zhou HJ, Ge QY, Su J, et al. MicroRNA miR-302 inhibits the tumorigenicity of endometrial cancer cells by suppression of Cyclin D1 and CDK1. Cancer Lett. 2014;345:39–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, et al. miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology. 2010;51:1614–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu L, Zhang J, Guo X, Li Z, Zhang P. MicroRNA-224 upregulation and AKT activation synergistically predict poor prognosis in patients with hepatocellular carcinoma. Cancer Epidemiol. 2014;38:408–13.Google Scholar
  30. 30.
    Zhao J, Han SX, Ma JL, Ying X, Liu P, Li J, et al. The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep. 2013;30:253–9.PubMedGoogle Scholar
  31. 31.
    Zhu X, Li Y, Shen H, Li H, Long L, Hui L, et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett. 2013;587:73–81.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yi Zhang
    • 1
  • Wei Huang
    • 2
  • Yan Ran
    • 3
  • Yan Xiong
    • 1
  • Zibiao Zhong
    • 1
  • Xiaoli Fan
    • 1
  • Zhenghua Wang
    • 1
  • Qifa Ye
    • 1
    • 4
    • 5
  1. 1.Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on TransplantationWuhanChina
  2. 2.Oncology Department of the First People’s Hospital of ShundeGuangzhouChina
  3. 3.Anesthesia DepartmentZhongnan Hospital of Wuhan UniversityWuhanChina
  4. 4.Research Center of National Health Ministry on Transplantation Medicine Engineering and TechnologyThe 3rd Xiangya Hospital of Central South UniversityChangshaChina
  5. 5.Zhongnan Hospital of Wuhan UniversityWuhanChina

Personalised recommendations