Tumor Biology

, Volume 36, Issue 12, pp 9209–9213 | Cite as

Gene expressions of TRP channels in glioblastoma multiforme and relation with survival

  • M. Alptekin
  • S. Eroglu
  • E. Tutar
  • S. Sencan
  • M. A. Geyik
  • M. Ulasli
  • A. T. Demiryurek
  • C. Camci
Research Article

Abstract

Glioblastoma multiforme (GBM) is one of the most lethal forms of cancer in humans, with a median survival of 10 to 12 months. Glioblastoma is highly malignant since the cells are supported by a great number of blood vessels. Although new treatments have been developed by increasing knowledge of molecular nature of the disease, surgical operation remains the standard of care. The TRP (transient receptor potential) superfamily consists of cation-selective channels that have roles in sensory physiology such as thermo- and osmosensation and in several complex diseases such as cancer, cardiovascular, and neuronal diseases. The aim of this study was to investigate the expression levels of TRP channel genes in patients with glioblastoma multiforme and to evaluate the relationship between TRP gene expressions and survival of the patients. Thirty-three patients diagnosed with glioblastoma were enrolled to the study. The expression levels of 21 TRP genes were quantified by using qRT-PCR with dynamic array 48 × 48 chip (BioMark HD System, Fluidigm, South San Francisco, CA, USA). TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1, and TRPV2 were found significantly higher in glioblastoma patients. Moreover, there was a significant relationship between the overexpression of TRP genes and the survival of the patients. These results demonstrate for the first time that TRP channels contribute to the progression and survival of the glioblastoma patients.

Keywords

Glioblastoma multiforme TRP channels Survival 

References

  1. 1.
    Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996;39(2):235–50. discussion 50–2.CrossRefPubMedGoogle Scholar
  2. 2.
    Mahaley Jr MS, Mettlin C, Natarajan N, Laws Jr ER, Peace BB. National survey of patterns of care for brain-tumor patients. J Neurosurg. 1989;71(6):826–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53. doi: 10.2353/ajpath.2007.070011.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro-Oncology. 1999;1(1):14–25.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Berens M, Rutka J, Rosenblum M. Brain tumor epidemiology, growth, and invasion. Neurosurg Clin N Am. 1990;1(1):1–18.PubMedGoogle Scholar
  6. 6.
    Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15(11):1311–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Ohgaki H. Genetic pathways to glioblastomas. Neuropathology. 2005;25(1):1–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre P-L, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64(19):6892–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130(10):2596–606.CrossRefPubMedGoogle Scholar
  10. 10.
    Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12(3):218.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ouadid-Ahidouch H, Dhennin-Duthille I, Gautier M, Sevestre H, Ahidouch A. TRP channels: diagnostic markers and therapeutic targets for breast cancer? Trends Mol Med. 2013;19(2):117–24.CrossRefPubMedGoogle Scholar
  12. 12.
    Zimmermann H. Neurotransmitter release. FEBS Lett. 1990;268(2):394–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Capiod T. The need for calcium channels in cell proliferation. Recent Pat Anticancer Drug Discov. 2013;8(1):4–17.CrossRefPubMedGoogle Scholar
  14. 14.
    Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem. 2012;287(38):31674–80.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2 & plus; transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–18.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8(5):361–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.CrossRefPubMedGoogle Scholar
  18. 18.
    Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol. 2014;171(24):5524–40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Numata T, Ogawa N, Takahashi N, Mori Y. TRP channels as sensors of oxygen availability. Pflugers Arch Eur J Physiol. 2013;465(8):1075–85.CrossRefGoogle Scholar
  20. 20.
    Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, et al. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res. 2010;70(1):418–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med. 2008;14(7):738–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tochhawng L, Deng S, Pervaiz S, Yap CT. Redox regulation of cancer cell migration and invasion. Mitochondrion. 2013;13(3):246–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Bauer I, Grozio A, Lasigliè D, Basile G, Sturla L, Magnone M, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem. 2012;287(49):40924–37.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol. 2010;11(3):232–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhao Z, Ni Y, Chen J, Zhong J, Yu H, Xu X, et al. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels. PloS One. 2012;7(3):e32628.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Su L, Liu W, Chen H, González-Pagán O, Habas R, Runnels L. TRPM7 regulates polarized cell movements. Biochem J. 2011;434:513–21.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Damann N, Owsianik G, Li S, Poll C, Nilius B. The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol. 2009;195(1):3–11.CrossRefGoogle Scholar
  28. 28.
    Lindemann O, Umlauf D, Frank S, Schimmelpfennig S, Bertrand J, Pap T, et al. TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J Immunol. 2013;190(11):5496–505.CrossRefPubMedGoogle Scholar
  29. 29.
    Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Kiselyov K, Soyombo A, Muallem S. TRPpathies. J Physiol. 2007;578(3):641–53.CrossRefPubMedGoogle Scholar
  31. 31.
    Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165–217.CrossRefPubMedGoogle Scholar
  32. 32.
    Gkika D, Prevarskaya N. Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochim Biophys Acta (BBA)-Mol Cell Res. 2009;1793(6):953–8.CrossRefGoogle Scholar
  33. 33.
    Prevarskaya N, Zhang L, Barritt G. TRP channels in cancer. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2007;1772(8):937–46.CrossRefGoogle Scholar
  34. 34.
    Wısnoskey B, Sınkıns W, Schıllıng W. Activation of vanilloid receptor type I in the endoplasmic reticulum fails to activate store-operated Ca2+ entry. Biochem J. 2003;372:517–28.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu X-ZS, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci. 2001;98(19):10692–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, et al. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem. 2007;102(3):977–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, et al. TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis. 2010;31(5):794–803.CrossRefPubMedGoogle Scholar
  38. 38.
    Ishii M, Oyama A, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y, et al. Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. Anticancer Res. 2007;27(6B):3987–92.PubMedGoogle Scholar
  39. 39.
    Morelli MB, Nabissi M, Amantini C, Farfariello V, Ricci-Vitiani L, di Martino S, et al. The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. Int J Cancer. 2012;131(7):E1067–77.CrossRefPubMedGoogle Scholar
  40. 40.
    Stock K, Kumar J, Synowitz M, Petrosino S, Imperatore R, Smith ESJ, et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med. 2012;18(8):1232–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bomben VC, Sontheimer H. Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia. 2010;58(10):1145–56.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. 2010;102(14):1052–68.CrossRefPubMedGoogle Scholar
  43. 43.
    Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. J Neurochem. 2011;119(3):474–85.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu M, Inoue K, Leng T, Guo S, Xiong Z-G. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell Signal. 2014;26(12):2773–81.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wondergem R, Ecay TW, Mahieu F, Owsianik G, Nilius B. HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun. 2008;372(1):210–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.CrossRefPubMedGoogle Scholar
  47. 47.
    Nabissi M, Morelli MB, Santoni M, Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis. 2013;34(1):48–57.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • M. Alptekin
    • 1
  • S. Eroglu
    • 2
  • E. Tutar
    • 3
  • S. Sencan
    • 2
  • M. A. Geyik
    • 1
  • M. Ulasli
    • 2
  • A. T. Demiryurek
    • 4
  • C. Camci
    • 5
  1. 1.Department of Neurosurgery, Faculty of MedicineUniversity of GaziantepGaziantepTurkey
  2. 2.Department of Medical Biology, Faculty of MedicineUniversity of GaziantepGaziantepTurkey
  3. 3.Department of Pathology, Faculty of MedicineUniversity of GaziantepGaziantepTurkey
  4. 4.Department of Pharmacology, Faculty of MedicineUniversity of GaziantepGaziantepTurkey
  5. 5.Department of Medical Oncology, Faculty of MedicineUniversity of GaziantepGaziantepTurkey

Personalised recommendations