Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8425–8437 | Cite as

MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway

  • Ahmad Fatemi
  • Majid Safa
  • Ahmad Kazemi
Research Article

Abstract

Telomerase-targeted therapy for cancer has received great attention because telomerase is expressed in almost all cancer cells but is inactive in most normal somatic cells. This study was aimed to investigate the effects of telomerase inhibitor MST-312, a chemically modified derivative of epigallocatechin gallate (EGCG), on acute promyelocytic leukemia (APL) cells. Our results showed that MST-312 exerted a dose-dependent short-term cytotoxic effect on APL cells, with G2/M cell cycle arrest. Moreover, MST-312 induced apoptosis of APL cells in caspase-mediated manner. Telomeric repeat amplification protocol (TRAP) assay revealed significant reduction in telomerase activity of APL cells following short-term exposure to MST-312. Interestingly, MST-312-induced telomerase inhibition was coupled with suppression of NF-κB activity as evidenced by inhibition of IκBα phosphorylation and its degradation and decreased NF-κB DNA binding activity. In addition, gene expression analysis showed downregulation of genes regulated by NF-κB, such as antiapoptotic (survivin, Bcl-2, Mcl-1), proliferative (c-Myc), and telomerase-related (hTERT) genes. Importantly, MST-312 did not show any apoptotic effect in normal human peripheral blood mononuclear cells (PBMCs). In conclusion, our data suggest that dual inhibition of telomerase activity and NF-κB pathway by MST-312 represents a novel treatment strategy for APL.

Keywords

APL MST-312 Telomerase NF-κB 

Notes

Acknowledgments

This study was supported by the grant 23232 from Iran University of Medical Sciences.

Conflicts of interest

None

References

  1. 1.
    Stein EM, Tallman MS. Acute promyelocytic leukemia in children and adolescents. Acta Haematol. 2014;132(3-4):307–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen Z, Wang Z-Y, Chen S-J. Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol Ther. 1997;76(1):141–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica. 2007;92(1):81–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Fulda S. Evasion of apoptosis as a cellular stress response in cancer. International journal of cell biology. 2010;2010.Google Scholar
  5. 5.
    Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed research international. 2014;2014.Google Scholar
  6. 6.
    Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447(7147):924–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26(5):867–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer. 2008;8(3):167–79.CrossRefPubMedGoogle Scholar
  9. 9.
    Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38(9):426–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Chang S, DePinho RA. Telomerase extracurricular activities. Proc Natl Acad Sci. 2002;99(20):12520–2.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5(5):474–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li D. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene. 2002;21(23):3784–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Kirkpatrick KL, Newbold RF, Mokbel K. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinogen. 2004;3(1):1.CrossRefGoogle Scholar
  15. 15.
    Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene. 2003;22(1):131–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee J, Sung Y, Cheong C, Choi Y, Jeon H, Sun W, et al. TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene. 2008;27(26):3754–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Massard C, Zermati Y, Pauleau A, Larochette N, Metivier D, Sabatier L, et al. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene. 2006;25(33):4505–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene. 2004;24(8):1320–7.CrossRefGoogle Scholar
  19. 19.
    Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Park J-I, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460(7251):66–72.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jost PJ, Ruland J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109(7):2700–7.PubMedGoogle Scholar
  22. 22.
    Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G. Nuclear factor κB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92(9):1224–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dutta J, Fan Y, Gupta N, Fan G, Gelinas C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene. 2006;25(51):6800–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Nagel D, Vincendeau M, Eitelhuber A, Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014.Google Scholar
  26. 26.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 1999;13(18):2388–99.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Herbert B-S, Pitts A, Baker S, Hamilton S, Wright W, Shay J, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci. 1999;96(25):14276–81.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Röth A, Dürig J, Himmelreich H, Bug S, Siebert R, Dührsen U, et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia. 2007;21(12):2456–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Blackburn EH. Telomere states and cell fates. Nature. 2000;408(6808):53–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Ghaffari S, Shayan-Asl N, Jamialahmadi A, Alimoghaddam K, Ghavamzadeh A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Annals of Oncology. 2008:mdn394.Google Scholar
  32. 32.
    Seimiya H, Oh-hara T, Suzuki T, Naasani I, Shimazaki T, Tsuchiya K, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-199. Mol Cancer Ther. 2002;1(9):657–65. Supported in part by a grant-in-aid for scientific research on priority areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan. PubMedGoogle Scholar
  33. 33.
    Gurung RL, Lim HK, Venkatesan S, Lee PSW, Hande MP. Targeting DNA-PKcs and telomerase in brain tumour cells. Mol Cancer. 2014;13(1):232.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Serrano D, Bleau A-M, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, et al. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer. 2011;10(96).Google Scholar
  35. 35.
    Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129(1):91–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.CrossRefPubMedGoogle Scholar
  37. 37.
    Cerni C. Telomeres, telomerase, and myc. An update. Mutation Res/Rev Mutation Res. 2000;462(1):31–47.CrossRefGoogle Scholar
  38. 38.
    Zuo Q-P, Liu S-K, Li Z-J, Li B, Zhou Y-L, Guo R, et al. NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG2 hepatoma cell line. Eur J Pharmacol. 2011;672(1):113–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Yin L, Hubbard AK, Giardina C. NF-κB regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem. 2000;275(47):36671–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang JC, Bennett MR. Nuclear factor-κΒ–mediated regulation of telomerase the Myc link. Arterioscler Thromb Vasc Biol. 2010;30(12):2327–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Olaussen KA, Dubrana K, Domont J, Spano J-P, Sabatier L, Soria J-C. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol/Hematol. 2006;57(3):191–214.CrossRefGoogle Scholar
  42. 42.
    Shay JW. Telomerase as a target for cancer therapeutics. Gene-based therapies for cancer: Springer; 2010. p. 231-49.Google Scholar
  43. 43.
    Wong VC, Ma J, Hawkins CE. Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett. 2009;274(1):151–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat. 2006;96(1):73–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Kraemer K, Fuessel S, Schmidt U, Kotzsch M, Schwenzer B, Wirth MP, et al. Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin Cancer Res. 2003;9(10):3794–800.PubMedGoogle Scholar
  46. 46.
    Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H. Antitumor activity of G-quadruplex–interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261(2):226–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Calado RT, Chen J. Telomerase: not just for the elongation of telomeres. Bioessays. 2006;28(2):109–12.CrossRefPubMedGoogle Scholar
  48. 48.
    Ding D, Xi P, Zhou J, Wang M, Cong Y-S. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 2013;27(11):4375–83.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Hematology, School of Allied Medical SciencesIran University of Medical SciencesTehranIran

Personalised recommendations