Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8349–8357 | Cite as

Risk factors and prediction-score model for distant metastasis in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy

  • An-Chuan Li
  • Wei-Wei Xiao
  • Lin Wang
  • Guan-Zhu Shen
  • An-An Xu
  • Yan-Qing Cao
  • Shao-Min Huang
  • Cheng-Guang Lin
  • Fei Han
  • Xiao-Wu Deng
  • Chong Zhao
Research Article

Abstract

The objective of this study is to identify the risk factors and construct a prediction-score model for distant metastasis (DM) in nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). A total of 520 nonmetastatic NPC patients were analysed retrospectively. The independent risk factors for DM were tested by multivariate Cox regression analysis. The prediction-score model was established according to the regression coefficient. The median follow-up was 88.4 months. The 5-year DM rate was 15.1 %. N2–3, primary tumour volume of nasopharynx (GTVnx) >24.56 cm3, haemoglobin change after treatment (ΔHGB) >25.8 g/L, albumin-globulin ratio (AGR) ≤1.34, pretreatment neutrophil-lymphocyte ratio (NLR) >2.81 and pretreatment serum lactate dehydrogenase (LDH) >245 U/L were significantly adverse independent predictive factors for DM. Three subgroups were defined based on the prediction-score model: low risk (0–2), intermediate risk (3–4) and high risk (5–8). The 5-year DM rates were 4.6, 21.8 and 50.8 %, respectively (P < 0.001). The areas under the curve for DM in the prediction-score model and the UICC/AJCC staging system seventh edition were 0.748 and 0.627, respectively (P < 0.001). The scoring model is useful in evaluating the risk of DM in IMRT-treated NPC patients and guiding future therapeutic trials. Further prospective study is needed.

Keywords

Nasopharyngeal carcinoma Prediction-score model Distant metastasis Intensity-modulated radiotherapy 

Notes

Conflicts of interest

None

Supplementary material

13277_2015_3574_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. 1.
    Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:421–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhao C, Xiao W, Han F, Lu L, Wu S, et al. Long-term outcome and prognostic factors of patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. Chin J Radiat Oncol. 2010;19:191–6.Google Scholar
  3. 3.
    Kam MK, Teo PM, Chau RM, Cheung KY, Choi PH, et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int J Radiat Oncol Biol Phys. 2004;60:1440–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee N, Harris J, Garden AS, Straube W, Glisson B, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009;27:3684–90.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ng WT, Lee MC, Hung WM, Choi CW, Lee KC, et al. Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2011;79:420–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Sun X, Su S, Chen C, Han F, Zhao C, et al. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother Oncol. 2014;110:398–403.CrossRefPubMedGoogle Scholar
  7. 7.
    Razak AR, Siu LL, Liu FF, Ito E, O'Sullivan B, et al. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer. 2010;46:1967–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Bensouda Y, Kaikani W, Ahbeddou N, Rahhali R, Jabri M, et al. Treatment for metastatic nasopharyngeal carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128:79–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Yu E, O'Sullivan B, Kim J, Siu L, Bartlett E. Magnetic resonance imaging of nasopharyngeal carcinoma. Expert Rev Anticancer Ther. 2010;10:365–75.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee N, Xia P, Quivey JM, Sultanem K, Poon I, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys. 2002;53:12–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Qiu MZ, Xu RH, Ruan DY, Li ZH, Luo HY, et al. Incidence of anemia, leukocytosis, and thrombocytosis in patients with solid tumors in China. Tumour Biol. 2010;31:633–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou GQ, Tang LL, Mao YP, Chen L, Li WF, et al. Baseline serum lactate dehydrogenase levels for patients treated with intensity-modulated radiotherapy for nasopharyngeal carcinoma: a predictor of poor prognosis and subsequent liver metastasis. Int J Radiat Oncol Biol Phys. 2012;82:e359–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Xiao WW, Huang SM, Han F, Wu SX, Lu LX, et al. Local control, survival, and late toxicities of locally advanced nasopharyngeal carcinoma treated by simultaneous modulated accelerated radiotherapy combined with cisplatin concurrent chemotherapy: long-term results of a phase 2 study. Cancer. 2011;117:1874–83.CrossRefPubMedGoogle Scholar
  14. 14.
    WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157-163.Google Scholar
  15. 15.
    McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009;12:444–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu Z, Su Y, Zeng RF, Gu MF, Huang SM. Prognostic value of tumor volume for patients with nasopharyngeal carcinoma treated with concurrent chemotherapy and intensity-modulated radiotherapy. J Cancer Res Clin Oncol. 2014;140:69–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee CC, Huang TT, Lee MS, Hsiao SH, Lin HY, et al. Clinical application of tumor volume in advanced nasopharyngeal carcinoma to predict outcome. Radiat Oncol. 2010;5:20.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guo R, Sun Y, Yu XL, Yin WJ, Li WF, et al. Is primary tumor volume still a prognostic factor in intensity modulated radiation therapy for nasopharyngeal carcinoma? Radiother Oncol. 2012;104:294–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Chua DT, Sham JS, Kwong DL, Tai KS, Wu PM, et al. Volumetric analysis of tumor extent in nasopharyngeal carcinoma and correlation with treatment outcome. Int J Radiat Oncol Biol Phys. 1997;39:711–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen MK, Chen TH, Liu JP, Chang CC, Chie WC. Better prediction of prognosis for patients with nasopharyngeal carcinoma using primary tumor volume. Cancer. 2004;100:2160–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27:131–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson CR, Thames HD, Huang DT, Schmidt-Ullrich RK. The tumor volume and clonogen number relationship: tumor control predictions based upon tumor volume estimates derived from computed tomography. Int J Radiat Oncol Biol Phys. 1995;33:281–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Lartigau E, Le Ridant AM, Lambin P, Weeger P, Martin L, et al. Oxygenation of head and neck tumors. Cancer. 1993;71:2319–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Okunieff P, Hoeckel M, Dunphy EP, Schlenger K, Knoop C, et al. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1993;26:631–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Yaes RJ. Tumor heterogeneity, tumor size, and radioresistance. Int J Radiat Oncol Biol Phys. 1989;17:993–1005.CrossRefPubMedGoogle Scholar
  26. 26.
    Bentzen SM, Johansen LV, Overgaard J, Thames HD. Clinical radiobiology of squamous cell carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys. 1991;20:1197–206.CrossRefPubMedGoogle Scholar
  27. 27.
    Hill RP, De Jaeger K, Jang A, Cairns R. PH, hypoxia and metastasis. Novartis Found Symp. 2001;240:154–65.CrossRefPubMedGoogle Scholar
  28. 28.
    De Jaeger K, Merlo FM, Kavanagh MC, Fyles AW, Hedley D, et al. Heterogeneity of tumor oxygenation: relationship to tumor necrosis, tumor size, and metastasis. Int J Radiat Oncol Biol Phys. 1998;42:717–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang PY, Wang CT, Cao KJ, Guo X, Guo L, et al. Pretreatment body mass index as an independent prognostic factor in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy: findings from a randomised trial. Eur J Cancer. 2013;49:1923–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Gonzalez MC, Pastore CA, Orlandi SP, Heymsfield SB. Obesity paradox in cancer: new insights provided by body composition. Am J Clin Nutr. 2014;99:999–1005.CrossRefPubMedGoogle Scholar
  31. 31.
    Gao J, Tao YL, Li G, Yi W, Xia YF. Involvement of difference in decrease of hemoglobin level in poor prognosis of stage I and II nasopharyngeal carcinoma: implication in outcome of radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:1471–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Chang H, Gao J, Xu BQ, Guo SP, Lu RB, et al. Haemoglobin, neutrophil to lymphocyte ratio and platelet count improve prognosis prediction of the TNM staging system in nasopharyngeal carcinoma: development and validation in 3,237 patients from a single institution. Clin Oncol (R Coll Radiol). 2013;25:639–46.CrossRefGoogle Scholar
  33. 33.
    Wan S, Lai Y, Myers RE, Li B, Palazzo JP, et al. Post-diagnosis hemoglobin change associates with overall survival of multiple malignancies—results from a 14-year hospital-based cohort of lung, breast, colorectal, and liver cancers. BMC Cancer. 2013;13:340.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grotto HZ. Anaemia of cancer: an overview of mechanisms involved in its pathogenesis. Med Oncol. 2008;25:12–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Seaton K. Albumin concentration controls cancer. J Natl Med Assoc. 2001;93:490–3.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;9:69.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li G, Gao J, Liu ZG, Tao YL, Xu BQ, et al. Influence of pretreatment ideal body weight percentile and albumin on prognosis of nasopharyngeal carcinoma: long-term outcomes of 512 patients from a single institution. Head Neck. 2014;36:660–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Lin JC, Wang WY, Chen KY, Wei YH, Liang WM, et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med. 2004;350:2461–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Gourzones C, Barjon C, Busson P. Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol. 2012;22:127–36.CrossRefPubMedGoogle Scholar
  40. 40.
    An X, Ding PR, Wang FH, Jiang WQ, Li YH. Elevated neutrophil to lymphocyte ratio predicts poor prognosis in nasopharyngeal carcinoma. Tumour Biol. 2011;32:317–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Li G, Gao J, Tao YL, Xu BQ, Tu ZW, et al. Increased pretreatment levels of serum LDH and ALP as poor prognostic factors for nasopharyngeal carcinoma. Chin J Radiat Oncol. 2012;31:197–206.Google Scholar
  43. 43.
    Jin Y, Cai XY, Cai YC, Cao Y, Xia Q, et al. To build a prognostic score model containing indispensible tumour markers for metastatic nasopharyngeal carcinoma in an epidemic area. Eur J Cancer. 2012;48:882–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang W, Feng M, Fan Z, Li J, Lang J. Clinical outcomes and prognostic factors of 695 nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy. Biomed Res Int. 2014;2014:814948.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Cheng SH, Tsai SY, Horng CF, Yen KL, Jian JJ, et al. A prognostic scoring system for locoregional control in nasopharyngeal carcinoma following conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66:992–1003.CrossRefPubMedGoogle Scholar
  46. 46.
    Tang LQ, Chen QY, Fan W, Liu H, Zhang L, et al. Prospective study of tailoring whole-body dual-modality [18F]fluorodeoxyglucose positron emission tomography/computed tomography with plasma Epstein-Barr virus DNA for detecting distant metastasis in endemic nasopharyngeal carcinoma at initial staging. J Clin Oncol. 2013;31:2861–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • An-Chuan Li
    • 1
    • 2
  • Wei-Wei Xiao
    • 1
  • Lin Wang
    • 1
  • Guan-Zhu Shen
    • 1
  • An-An Xu
    • 1
    • 3
  • Yan-Qing Cao
    • 1
    • 4
  • Shao-Min Huang
    • 1
  • Cheng-Guang Lin
    • 1
  • Fei Han
    • 1
  • Xiao-Wu Deng
    • 1
  • Chong Zhao
    • 1
  1. 1.State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouChina
  2. 2.Department of Radiation OncologyFujian Medical University Union HospitalFuzhouChina
  3. 3.Department of Radiation OncologyCancer Center of Guangzhou Medical UniversityGuangzhouChina
  4. 4.Department of Radiation OncologyThe First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical UniversityGuangzhouChina

Personalised recommendations