Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 4905–4912 | Cite as

DNA methylation as a promising landscape: A simple blood test for breast cancer prediction

  • Golnaz Khakpour
  • Arash Pooladi
  • Pantea Izadi
  • Mehrdad Noruzinia
  • Javad Tavakkoly Bazzaz
Review

Abstract

Breast cancer is the most common malignancy among women worldwide. Risk assessment is one of the main services delivered by cancer clinics. Biomarker analysis on different tissues including the peripheral blood can provide crucial information. One of the potential epigenetic biomarkers (epimarkers) is introduced as the peripheral blood DNA methylation pattern. This study was conducted to evaluate the potential value of peripheral blood epimarkers as an accessible tool to predict the risk of breast cancer development. WBC’s DNA was the focus of several case-control studies at both genome wide and candidate gene levels to reveal epigenetic changes accounting for predisposition to breast cancer, leading to suggest that ATM, TITF1, SFRP1, NUP155, NEUROD1, ZNF217, DBC2, DOK7 and ESR1 genes and the LINE1, Alu and Sat2 DNA elements could be considered as the potential epimarkers. To address that by which mechanisms WBC’s DNA methylation patterns could be linked to the propensity to breast cancer, several contemplations have been offered. Constitutional epimutation during embryonic life, and methylation changes secondary to either environmental exposures or tumor-mediated immune response, are the two main mechanisms. One can deduce that epimarkers based on their potential properties or regulatory impacts on cancer-related genes may be employed for risk prediction, prognosis, and survival inferences that are highly required for breast cancer management toward personalized medicine.

Keywords

Epimarker WBC DNA methylation Breast cancer Risk prediction 

Notes

Conflicts of interest

None

References

  1. 1.
    Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, et al. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One. 2011;6(1):e16080.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver WR, et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med. 2010;362(11):986–93.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Mukhtar TK, Yeates DR, Goldacre MJ. Breast cancer mortality trends in England and the assessment of the effectiveness of mammography screening: population-based study. J R Soc Med. 2013;106(6):234–42.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108(11):2205–40.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Bell RJ. Screening mammography - early detection or over-diagnosis? Contribution from Australian data. Climacteric. 2014;2:1–7.Google Scholar
  7. 7.
    Widschwendter M, Apostolidou S, Raum E, Rothenbacher D, Fiegl H, Menon U, et al. Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study. PLoS One. 2008;3(7):e2656.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, et al. Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res. 2010;30(7):2489–96.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Sonnenberg A, Marciniak JY, Skowronski EA, Manouchehri S, Rassenti L, Ghia EM, et al. Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma. Electrophoresis. 2014;35(12–13):1828–36.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Woodson K, Mason J, Choi SW, Hartman T, Tangrea J, Virtamo J, et al. Hypomethylation of p53 in peripheral blood DNA is associated with the development of lung cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(1):69–74.PubMedGoogle Scholar
  11. 11.
    Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet. 2009;18(7):1332–42.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Choi J-Y, James SR, Link PA, McCann SE, Hong C-C, Davis W, et al. Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis. 2009;30(11):1889–97.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, et al. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res. 2011;4(1):23–33.CrossRefGoogle Scholar
  14. 14.
    Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S. BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat. 2011;129(1):69–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Wojdacz TK, Thestrup BB, Overgaard J, Hansen LL. Methylation of cancer related genes in tumor and peripheral blood DNA from the same breast cancer patient as two independent events. Diagn Pathol. 2011;6:116.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Wu HC, John EM, Ferris JS, Keegan TH, Chung WK, Andrulis I, et al. Global DNA methylation levels in girls with and without a family history of breast cancer. Epigenetics. 2011;6(1):29–33.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Bosviel R, Garcia S, Lavediaux G, Michard E, Dravers M, Kwiatkowski F, et al. BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls. Cancer Epidemiol. 2012;36(3):e177–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Pang D, Zhao Y, Xue W, Shan M, Chen Y, Zhang Y, et al. Methylation profiles of the BRCA1 promoter in hereditary and sporadic breast cancer among Han Chinese. Med Oncol. 2012;29(3):1561–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, et al. Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 2012;72(9):2304–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu HC, Delgado-Cruzata L, Flom JD, Perrin M, Liao Y, Ferris JS, et al. Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Carcinogenesis. 2012;33(10):1946–52.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Kitkumthorn N, Tuangsintanakul T, Rattanatanyong P, Tiwawech D, Mutirangura A. LINE-1 methylation in the peripheral blood mononuclear cells of cancer patients. Clin Chim Acta. 2012;413(9–10):869–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Hansmann T, Pliushch G, Leubner M, Kroll P, Endt D, Gehrig A, et al. Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet. 2012;21(21):4669–79.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105(10):694–700.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis. 2013;34(1):102–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Anjum S, Fourkala EO, Zikan M, Wong A, Gentry-Maharaj A, Jones A, et al. A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Med. 2014;6(6):47.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Kuchiba A, Iwasaki M, Ono H, Kasuga Y, Yokoyama S, Onuma H, et al. Global methylation levels in peripheral blood leukocyte DNA by LUMA and breast cancer: a case–control study in Japanese women. Br J Cancer. 2014;110(11):2765–71.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Cash HL, Tao L, Yuan JM, Marsit CJ, Houseman EA, Xiang YB, et al. LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese. Int J Cancer. 2012;130(5):1151–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Hou L, Wang H, Sartori S, Gawron A, Lissowska J, Bollati V, et al. Blood leukocyte DNA hypomethylation and gastric cancer risk in a high-risk Polish population. Int J Cancer. 2010;127(8):1866–74.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD, et al. Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2007;16(1):108–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Lim U, Flood A, Choi SW, Albanes D, Cross AJ, Schatzkin A, et al. Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women. Gastroenterology. 2008;134(1):47–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT. DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol. 2011;29(9):1133–9.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Moore LE, Pfeiffer RM, Poscablo C, Real FX, Kogevinas M, Silverman D, et al. Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a casecontrol study. Lancet Oncol. 2008;9(4):359–66.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Pedersen KS, Bamlet WR, Oberg AL, de Andrade M, Matsumoto ME, Tang H, et al. Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS One. 2011;6(3):e2656.CrossRefGoogle Scholar
  34. 34.
    Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One. 2009;4(12):e8274.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Wilhelm CS, Kelsey KT, Butler R, Plaza S, Gagne L, Zens MS, et al. Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res. 2010;16(5):1682–9.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Pufulete M, Al-Ghnaniem R, Leather AJ, Appleby P, Gout S, Terry C, et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology. 2003;124(5):1240–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics. 2011;6(7):828–37.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Snell C, Krypuy M, Wong EM, Loughrey MB, Dobrovic A. BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res. 2008;10(1):R12.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Suijkerbuijk KP, Fackler MJ, Sukumar S, van Gils CH, van Laar T, van der Wall E, et al. Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol. 2008;19(11):1870–4.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R38.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Butcher DT, Rodenhiser DI. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer. 2007;43(1):210–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Al-Moghrabi N, Al-Qasem AJ, Aboussekhra A. Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women. Int J Oncol. 2011;39(1):129–35.PubMedGoogle Scholar
  43. 43.
    Kontorovich T, Cohen Y, Nir U, Friedman E. Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Res Treat. 2009;116(1):195–200.CrossRefPubMedGoogle Scholar
  44. 44.
    Marsit CJ, Christensen BC, Houseman EA, Karagas MR, Wrensch MR, Yeh RF, et al. Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. Carcinogenesis. 2009;30(3):416–22.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Langevin SM, Koestler DC, Christensen BC, Butler RA, Wiencke JK, Nelson HH, et al. Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. Epigenetics. 2012;7(3):291–9.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Delgado-Cruzata L, Wu HC, Liao Y, Santella RM, Terry MB. Differences in DNA methylation by extent of breast cancer family history in unaffected women. Epigenetics. 2014;9(2):243–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Delgado-Cruzata L, Wu HC, Perrin M, Liao Y, Kappil MA, Ferris JS, et al. Global DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Epigenetics. 2012;7(8):868–74.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL, et al. DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in a population-based study. FASEB J. 2012;26(6):2657–66.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, et al. Global methylation profiles in DNA from different blood cell types. Epigenetics. 2011;6(1):76–85.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, et al. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J Epidemiol. 2012;22(5):384–94.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Ally MS, Al-Ghnaniem R, Pufulete M. The relationship between gene-specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors. Cancer Epidemiol Biomarkers Prev. 2009;18(3):922–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet. 2006;38(10):1178–83.CrossRefPubMedGoogle Scholar
  53. 53.
    Hajikhan Mirzaei M, Noruzinia M, Karbassian H, Shafeghati Y, Keyhanee M, Bidmeshki-Pour A. Evaluation of Methylation Status in the 5′UTR Promoter Region of the DBC2 Gene as a Biomarker in Sporadic Breast Cancer. Cell J. 2012;14(1):19–24.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hitchins MP, Ward RL. Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J Med Genet. 2009;46(12):793–802.CrossRefPubMedGoogle Scholar
  55. 55.
    Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of deathassociated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129(5):879–90.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell. 2011;20(2):200–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, et al. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One. 2009;4(8):e6767.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1293–302.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol. 2007;20(7):711–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Al-Moundhri MS, Al-Nabhani M, Tarantini L, Baccarelli A, Rusiecki JA. The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma. PLoS One. 2010;5(12):e15585.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Flanagan JM, Wilhelm-Benartzi CS, Metcalf M, Kaye SB, Brown R. Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients. Ann Oncol. 2013;24(11):2813–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Dauksa A, Gulbinas A, Barauskas G, Pundzius J, Oldenburg J, El-Maarri O. Whole blood DNA aberrant methylation in pancreatic adenocarcinoma shows association with the course of the disease: a pilot study. PLoS One. 2012;7(5):e37509.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, et al. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women’s cancer. PLoS Genet. 2012;8(2):e1002517.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
  2. 2.Medical Genetics Department, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations