Tumor Biology

, Volume 36, Issue 11, pp 8455–8463 | Cite as

Effects of sorafenib on lung metastasis in rats with hepatocellular carcinoma: the role of microRNAs

  • Yi Shi
  • Aimin Huang
Research Article


Many patients with advanced hepatocellular carcinoma (HCC) develop lung metastasis and available treatments are limited. The anticancer drug sorafenib has opened a window of hope for patients with advanced hepatocellular carcinoma. However, the effect of sorafenib is limited by drug resistance. MicroRNAs have been reported to play an important role in HCC, but the effect of sorafenib on microRNAs (miRNAs) and on lung metastasis is not clear. This report employed a high-throughput deep sequencing technique to detect the difference of miRNAs and immunohistochemical technique to detect the difference of protein in implanted primary tumors and in metastatic HCC tumors after treatment with sorafenib. Among the detected miRNAs, we identified rno-miR-122-3p and rmo-miR-122-5p that were downregulated and rno-miR-383-5p and rno-miR-34a-5p that were upregulated and one novel miRNAs is reported as downregulated here for the first time. Immunohistochemical analysis of known miRNAs identified CMYC protein expression as inhibited, MDM2 protein was expressed, and NM23 and GST protein were upregulated. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of novel miRNA found that the targeted genes were concentrated in pathways of metabolism, especially in cytochrome P450. These results indicate that these miRNAs are likely to be involved in the treatment response of lung metastases of HCC to sorafenib. They may be useful as biomarkers to predict the clinical treatment response of sorafenib.


Hepatocellular carcinoma (HCC) Lung metastasis Sorafenib MicroRNAs CMYC 



Protein 53


E-ca2+-dependent cell adhesion


Glutathione S-transferase


Cycloxygenase 2


Vascular endothelial growth factor


B cell lymphoma-2


Murine double minute 2


Cyclin-dependent kinase 4


Epstein-Barr virus



This work was supported by National Natural Science Foundation (No. 81272574) and Youth Science Foundation of the Fujian Bureau of Public Health (No. 2011-1-22).

Supplementary material

13277_2015_3565_MOESM1_ESM.xlsx (14 kb)
Table S1 (XLSX 13 kb)
13277_2015_3565_MOESM2_ESM.xls (77 kb)
Table S2 (XLS 77 kb)
13277_2015_3565_MOESM3_ESM.xls (77 kb)
Table S3 (XLS 77 kb)
13277_2015_3565_MOESM4_ESM.xls (61 kb)
Table S4 (XLS 61 kb)
13277_2015_3565_MOESM5_ESM.xls (64 kb)
Table S5 (XLS 63 kb)
13277_2015_3565_MOESM6_ESM.xls (62 kb)
Table S6 (XLS 62 kb)
13277_2015_3565_MOESM7_ESM.xls (27 kb)
Table S7 (XLS 27 kb)
13277_2015_3565_MOESM8_ESM.xls (38 kb)
Table S8 (XLS 37 kb)
13277_2015_3565_MOESM9_ESM.xls (28 kb)
Table S9 (XLS 28 kb)
13277_2015_3565_MOESM10_ESM.xls (44 kb)
Table S10 (XLS 44 kb)
13277_2015_3565_MOESM11_ESM.xls (55 kb)
Table S11 (XLS 55 kb)
13277_2015_3565_MOESM12_ESM.xlsx (11 kb)
Table S12 (XLSX 11 kb)


  1. 1.
    Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013;5:345–52.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Berasain C. Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut. 2013;62:1674–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40:197–208.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang L, Zhang X, Jia LT, Hu SJ, Zhao J, Yang JD, et al. C-Myc-mediated epigenetic silencing of microRNA-101 contributes to dysregulation of multiple pathways in hepatocellular carcinoma. Hepatology. 2014;59:1850–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou C, Liu J, Li Y, Liu L, Zhang X, Ma CY, et al. MicroRNA-1274a, a modulator of sorafenib induced a disintegrin and metalloproteinase 9 (ADAM9) down-regulation in hepatocellular carcinoma. Febs Lett. 2011;585:1828–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Hu J, Xu Y, Hao J, Wang S, Li C, Meng S. MiR-122 in hepatic function and liver diseases. Protein Cell. 2012;3:364–71.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Han Z, Zhang Y, Xu Y, Ji J, Xu W, Zhao Y, et al. Cell cycle changes mediated by the p53/miR-34c axis are involved in the malignant transformation of human bronchial epithelial cells by benzo[a]pyrene. Toxicol Lett. 2014;225:275–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Fan CG, Wang CM, Tian C, Wang Y, Li L, Sun WS, et al. MiR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol Rep. 2011;26:1281–6.PubMedGoogle Scholar
  9. 9.
    Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. Embo J. 2013;32:3079–95.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, et al. A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res. 2014;74:6236–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang F, Li QJ, Gong ZB, Zhou L, You N, Wang S, et al. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol Cancer Res Treat. 2014;13:77–86.PubMedGoogle Scholar
  12. 12.
    Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.PubMedGoogle Scholar
  13. 13.
    Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC, et al. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer. 2013;13:25.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells. 2014;32:902–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Manfe V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, et al. MiR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One. 2012;7, e29541.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Duan W, Xu Y, Dong Y, Cao L, Tong J, Zhou X. Ectopic expression of miR-34a enhances radiosensitivity of non-small cell lung cancer cells, partly by suppressing the LyGDI signaling pathway. J Radiat Res. 2013;54:611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One. 2012;7, e42034.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Forte E, Salinas RE, Chang C, Zhou T, Linnstaedt SD, Gottwein E, et al. The Epstein-Barr virus (EBV)-induced tumor suppressor microRNA MiR-34a is growth promoting in EBV-infected B cells. J Virol. 2012;86:6889–98.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Allen E, Xie Z, Gustafson AM, Carrington JC. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121:207–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8:517–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Park G, Borkovich KA. Small RNA isolation and library construction for expression profiling of small RNAs from Neurospora and Fusarium using illumina high-throughput deep sequencing. Methods Mol Biol. 2012;883:155–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Galmiche A, Chauffert B, Barbare JC. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett. 2014;346:159–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Hung CH, Chiu YC, Chen CH, Hu TH. MicroRNAs in hepatocellular carcinoma: carcinogenesis, progression, and therapeutic target. Biomed Res Int. 2014;2014:486407.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang D, Tan J, Xu Y, Tan X, Han M, Tu Y, et al. Identification of microRNAs and target genes involvement in hepatocellular carcinoma with microarray data. Hepatogastroenterology. 2015;62:378–82.PubMedGoogle Scholar
  26. 26.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. MiR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1:106–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. MiR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375:315–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Li C, Wang Y, Wang S, Wu B, Hao J, Fan H, et al. Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol. 2013;87:2193–205.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, et al. MiR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014;9, e86872.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, et al. MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53.CrossRefPubMedGoogle Scholar
  31. 31.
    He Z, Cen D, Luo X, Li D, Li P, Liang L, et al. Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol. 2013;30:557.CrossRefPubMedGoogle Scholar
  32. 32.
    Li KK, Pang JC, Lau KM, Zhou L, Mao Y, Wang Y, et al. MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol. 2013;23:413–25.CrossRefPubMedGoogle Scholar
  33. 33.
    Nakao K, Miyaaki H, Ichikawa T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J Gastroenterol. 2014;49:589–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology. 2014;59:555–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Ho JC, Cheung ST, Leung KL, Ng IO, Fan ST. Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer. 2004;111:494–500.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsunedomi R, Iizuka N, Hamamoto Y, Uchimura S, Miyamoto T, Tamesa T, et al. Patterns of expression of cytochrome P450 genes in progression of hepatitis C virus-associated hepatocellular carcinoma. Int J Oncol. 2005;27:661–7.PubMedGoogle Scholar
  38. 38.
    Mohr L, Rainov NG, Mohr UG, Wands JR. Rabbit cytochrome P450 4B1: a novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma. Cancer Gene Ther. 2000;7:1008–14.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Pathology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
  2. 2.Department of Molecular PathologyFujian Provincial Tumor Hospital, The Teaching Hospital of Fujian Medical UniversityFuzhouChina
  3. 3.Fujian Provincial Key Laboratory of Translational Cancer MedicineFuzhouChina

Personalised recommendations