Tumor Biology

, Volume 36, Issue 11, pp 8609–8615 | Cite as

RETRACTED ARTICLE: A role of MMP-14 in the regulation of invasiveness of nasopharyngeal carcinoma

Research Article


Although matrix metalloproteinase 14 (MMP-14) has been shown to play a substantial role in the carcinogenesis of some types of cancer, its involvement in the pathogenesis of nasopharyngeal carcinoma (NPC) has not been reported. Here, we analyzed MMP-14 levels in the NPC specimens from patients and compared with the paired normal nasopharynx (NNP) tissues. We found that NPC had significantly higher messenger RNA (mRNA) and protein levels of MMP-14. Moreover, higher levels of MMP-14 correlated with more advanced status of clinical stage and lymphatic metastasis. In vitro, MMP-14 levels determined the potential of invasiveness of NPC cells, possibly through induction of EMT-associated genes. Our data thus highlight MMP-14 as a novel therapeutic target for NPC.


Matrix metalloproteinase 14 (MMP-14) Nasopharyngeal carcinoma (NPC) Metastasis Epithelial-mesenchymal transition (EMT) 


Conflicts of interest



  1. 1.
    Chou J, Lin YC, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma—review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30:946–63.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tao Q, Chan AT. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med. 2007;9:1–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Cho WC. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer. 2007;6:1.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gan YY, Fones-Tan A, Chan SH. Molecular diagnosis of nasopharyngeal carcinoma: a review. Ann Acad Med Singap. 1996;25:71–4.PubMedGoogle Scholar
  5. 5.
    Xie M, Yi X, Wang R, Wang L, He G, Zhu M, et al. 14-Thienyl methylene matrine (yyj18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting mapk and pi3k/akt pathways in vitro. Cell Physiol Biochem. 2014;33:1475–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang X, Ni W, Lei K. Mir-200b suppresses cell growth, migration and invasion by targeting notch1 in nasopharyngeal carcinoma. Cell Physiol Biochem. 2013;32:1288–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang SX, Qiu QH, Chen WB, Liang CH, Huang B. Celecoxib enhances radiosensitivity via induction of g(2)-m phase arrest and apoptosis in nasopharyngeal carcinoma. Cell Physiol Biochem. 2014;33:1484–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (mmp) in cancer. Arkh Patol. 2002;64:47–53.PubMedGoogle Scholar
  9. 9.
    Rhee JS, Coussens LM. RECKing MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Cao X. Regulation of metastasis of pediatric multiple myeloma by MMP13. Tumour Biol. 2014;35:8715–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Ye Y, Zhou X, Li X, Tang Y, Sun Y, Fang J. Inhibition of epidermal growth factor receptor signaling prohibits metastasis of gastric cancer via downregulation of MMP7 and MMP13. Tumour Biol. 2014;35:10891–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou X, Qi Y. PLGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014;35:9381–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu G, Jiang C, Li D, Wang R, Wang W. Mirna-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Song H, Tian Z, Qin Y, Yao G, Fu S, Geng J. Astrocyte elevated gene-1 activates MMP9 to increase invasiveness of colorectal cancer. Tumour Biol. 2014;35:6679–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Ding H, Zhu Y, Chu T, Wang S. Epidermal growth factor induced FoxO1 nuclear exclusion to activate MMP7-mediated metastasis of larynx carcinoma. Tumour Biol. 2014;35:9987–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Jian H, Zhao Y, Liu B, Lu S. SEMA4b inhibits MMP9 to prevent metastasis of non-small cell lung cancer. Tumour Biol. 2014;35:11051–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmad R, Shihab PK, Jasem S, Behbehani K. FSL-1 induces MMP-9 production through TLR-2 and NF-kappab/AP-1 signaling pathways in monocytic THP-1 cells. Cell Physiol Biochem. 2014;34:929–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, et al. MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem. 2014;34:266–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Alcantara MB, Dass CR. Regulation of MT1-MMP and MMP-2 by the serpin PEDF: a promising new target for metastatic cancer. Cell Physiol Biochem. 2013;31:487–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Ulasov I, Yi R, Guo D, Sarvaiya P, Cobbs C. The emerging role of mmp14 in brain tumorigenesis and future therapeutics. Biochim Biophys Acta. 1846;2014:113–20.Google Scholar
  24. 24.
    Nishida Y, Miyamori H, Thompson EW, Takino T, Endo Y, Sato H. Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for proMMP-2 generates active MMP-2. Cancer Res. 2008;68:9096–104.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang YZ, Wu KP, Wu AB, Yang ZC, Li JM, Mo YL, et al. MMP-14 overexpression correlates with poor prognosis in non-small cell lung cancer. Tumour Biol. 2014;35:9815–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou H, Wu A, Fu W, Lv Z, Zhang Z. Significance of semaphorin-3A and MMP-14 protein expression in non-small cell lung cancer. Oncol Lett. 2014;7:1395–400.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tobar N, Avalos MC, Mendez N, Smith PC, Bernabeu C, Quintanilla M, et al. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis. 2014;35:1770–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang B, Gao J, Rao Z, Shen Q. Clinicopathological and prognostic significance of alpha5beta1-integrin and MMP-14 expressions in colorectal cancer. Neoplasma. 2013;60:254–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, et al. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem. 2011;286:33167–77.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weng CJ, Chen MK, Lin CW, Chung TT, Yang SF. Single nucleotide polymorphisms and haplotypes of MMP-14 are associated with the risk and pathological development of oral cancer. Ann Surg Oncol. 2012;19 Suppl 3:S319–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Laudanski P, Swiatecka J, Kozlowski L, Lesniewska M, Wojtukiewicz M, Wolczynski S. Increased serum level of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP-14) in patients with breast cancer. Folia histochemica et cytobiologica / Pol Acad Sci Pol Histochem Cytochem Soc. 2010;48:101–3.Google Scholar
  32. 32.
    Zhang H, Liu M, Sun Y, Lu J. MMP-14 can serve as a prognostic marker in patients with supraglottic cancer. Eur Arch Otorhinolaryngol: Off J Eur Fed Oto-Rhino-Laryngol Soc. 2009;266:1427–34.CrossRefGoogle Scholar
  33. 33.
    Adley BP, Gleason KJ, Yang XJ, Stack MS. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: High level expression in clear cell carcinoma. Gynecol Oncol. 2009;112:319–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Atkinson JM, Pennington CJ, Martin SW, Anikin VA, Mearns AJ, Loadman PM, et al. Membrane type matrix metalloproteinases (MMPs) show differential expression in non-small cell lung cancer (NSCLC) compared to normal lung: correlation of MMP-14 mRNA expression and proteolytic activity. Eur J Cancer. 2007;43:1764–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Tetu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C, et al. The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis. Breast Cancer Res. 2006;8:R28.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Harrison GM, Davies G, Martin TA, Mason MD, Jiang WG. The influence of CD44v3-v10 on adhesion, invasion and MMP-14 expression in prostate cancer cells. Oncol Rep. 2006;15:199–206.PubMedGoogle Scholar
  37. 37.
    Baghy K, Iozzo RV, Kovalszky I. Decorin-TGFbeta axis in hepatic fibrosis and cirrhosis. J Histochem Cytochem. 2012;60:262–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lan HY, Chung AC. Transforming growth factor-beta and smads. Contrib Nephrol. 2011;170:75–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Michael M, Babic B, Khokha R, Tsao M, Ho J, Pintilie M, et al. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J Clin Oncol. 1999;17:1802–8.CrossRefPubMedGoogle Scholar
  43. 43.
    He L, Chu D, Li X, Zheng J, Liu S, Li J, et al. Matrix metalloproteinase-14 is a negative prognostic marker for patients with gastric cancer. Dig Dis Sci. 2013;58:1264–70.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina

Personalised recommendations