Skip to main content

Advertisement

Log in

The effect of statins on cancer cells—review

  • Review
  • Published:
Tumor Biology

Abstract

Statins [3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, abbreviated HMGCR) inhibitors], are well-known cholesterol-depleting agents. Since the early 1990s, it has been known that statins could be successfully used in cancer therapy, but the exact mechanism(s) of statin activity remains unclear and is now an extensive focus of investigation. So far, it was proven that there are several mechanisms that are activated by statins in cancer cells; some of them are leading to cell death. Statins exert different effects depending on cell line, statin concentration, duration of exposure of cells to statins, and the type of statin being used. It was shown that statins may inhibit the cell cycle by influence on both expression and activity of proteins involved in cell-cycle progression such as cyclins, cyclin-dependent kinases (CDK), and/or inhibitors of CDK. Also, statins may induce apoptosis by both intrinsic and extrinsic pathways. Statin treatment may lead to changes in molecular pathways dependent on the EGF receptor, mainly via inhibition of isoprenoid synthesis. By inhibition of the synthesis of cholesterol, statins may destabilize the cell membrane. Moreover, statins may change the arrangement of transporter OATP1, the localization of HMGCR, and could induce conformational changes in GLUT proteins. In this review, we have tried to gather and compare most of the recent outcomes of the research in this field. We have also attempted to explain why hydrophilic statins are less effective than hydrophobic statins. Finally, we have gathered results from in vivo experiments, presenting the use of statins in combined therapies and discussed a number of molecular targets that could serve as biomarkers predisposing to statin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown MS, Faust JR, Goldstein JL. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978;253:1121–8.

    CAS  PubMed  Google Scholar 

  2. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 2002;58(5):555–64.

    Article  CAS  PubMed  Google Scholar 

  3. Bansback N, Ara R, Ward S, Anis A, Choi HK. Statin therapy in rheumatoid arthritis: a cost-effectiveness and value-of-information analysis. Pharmacoeconomics. 2009;27(1):25–37.

    Article  PubMed  Google Scholar 

  4. Zhang Y, Bradley AB, Wang D, Reinhardt RA. Statins, bone metabolism and treatment of bone catabolic diseases. Pharmacol Res. 2014;88:53–61.

    Article  CAS  PubMed  Google Scholar 

  5. Osmak M. Statins and cancer: current and future prospects. Cancer Lett. 2012;324(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  6. Kubatka P, Kruyliak P, Rotrekl V, Jelinkova S, Mladosievicova B. Statins in oncological research: from experimental studies to clinical practice. Crit Rev Oncol Hematol. 2014;92(3):296–311.

    Article  PubMed  Google Scholar 

  7. Matsuoka T, Miyakoshi S, Tanzawa K, Nakahara K, Hosobuchi M, Serizawa N. Purification and characterization of cytochrome P450sca from Streptomyces carbophilus. ML-236B (compactin) induces P450sca in Streptomyces carbophilus that hydroxylates ML-236B to pravastatin sodium (CS-514), a tissue-selective inhibitor of 3-hydroxy-3-methylglutaril coenzyme A reductase. Eur J Biochem. 1989;184:707–13.

    Article  CAS  PubMed  Google Scholar 

  8. Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol. 2014;10(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  9. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–65.

    Article  CAS  PubMed  Google Scholar 

  10. Menter DG, Ramsauer VP, Harirforoosh S, Chakraborty K, Yang P, Hsi L, et al. Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites. PLoS ONE. 2011;6(12):e28813. doi:10.1371/journal.pone.0028813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19:117–25.

    Article  CAS  PubMed  Google Scholar 

  12. Hentosh P, Yuh SH, Elson CE, Peffley DM. Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog. 2001;32:154–66.

    Article  CAS  PubMed  Google Scholar 

  13. Sivaprasad U, Abbas T, Dutta A. Differential efficacy of 3-hydroxy-3-methylglutaryl CoA reductase inhibitors on the cell cycle of prostate cancer cells. Mol Cancer Ther. 2006;5(9):2310–6.

    Article  CAS  PubMed  Google Scholar 

  14. Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26(5):883–91.

    Article  CAS  PubMed  Google Scholar 

  15. Marcelli M, Cunningham GR, Haidacher SJ, Padayatty SJ, Sturgis L, Kagan C, et al. Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res. 1998;58:76–83.

    CAS  PubMed  Google Scholar 

  16. Qi X-F, Zheng L, Lee K-J, Kim D-H, Kim C-S, Cai D-Q, et al. HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death Dis. 2013;4:e518. doi:10.1038/cddis.2013.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song X, Liu BC, Lu XY, Yang LL, Zhai YJ, Eaton AF, et al. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression. Biochim Biophys Acta. 2014;1843(5):894–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horiguchi A, Sumitomo M, Asakuma J, Asano T, Asano T, Hayakawa M. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res. 2004;10:8648–55.

    Article  CAS  PubMed  Google Scholar 

  19. Denoyelle C, Vasse M, Körner M, Mishal Z, Ganné F, Vannier JP, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: an in vitro study. Carcinogenesis. 2001;22(8):1139–48.

    Article  CAS  PubMed  Google Scholar 

  20. Spampanato C, De Maria S, Sarnataro M, Giordano E, Zanfardino M, Baiano S, et al. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol. 2012;40(4):935–41.

    CAS  PubMed  Google Scholar 

  21. Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. PNAS USA. 1999;96:7797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tu YS, Kang XL, Zhou JG, Lv XF, Tang YB, Guan YY. Involvement of Chk1-Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. Eur J Pharmacol. 2011;670:356–64.

    Article  CAS  PubMed  Google Scholar 

  23. Yu X, Luo Y, Zhou Y, Zhang Q, Wang J, Wei N, et al. BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: analyses using a breast cancer cell line and tumoral xenograft model. Int J Oncol. 2008;33(3):555–63.

    CAS  PubMed  Google Scholar 

  24. Herrero-Martin G, Lopez-Rivas A. Statins activate a mitochondria-operated pathway of apoptosis in breast tumor cells by a mechanism regulated by ErbB2 and dependent on the prenylation of proteins. FEBS Lett. 2008;582:2589–94.

    Article  CAS  PubMed  Google Scholar 

  25. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by lovastatin through activation of caspase-3 and DNAse II in leukaemia HL-60 cells. Pharmacol Toxicol. 2000;86:83–91.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Y, Casey PJ, Kumar AP, Pervaiz S. Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell Death Dis. 2013;4:e568. doi:10.1038/cddis.2013.103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller T, Yang F, Wise CE, Meng F, Priester S, Munshi MK, et al. Simvastatin stimulates apoptosis in cholangiocarcinoma by inhibition of Rac1 activity. Dig Liver Dis. 2011;43(5):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gniadecki R. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun. 2004;320:165–9.

    Article  CAS  PubMed  Google Scholar 

  29. Helbig G, Hołowiecki J. Ras signaling pathway as a target for farnesyltransferase inhibitors—a new, promising prospects in the treatment for malignant disorders. Rev Pol Wiad Lek. 2004;57(9–10):462–7.

    Google Scholar 

  30. Engers R, Springer E, Michiels F, Collard JG, Gabbert HE. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem. 2001;276:41889–97.

    Article  CAS  PubMed  Google Scholar 

  31. Miller T, Yang F, Wise CE, Meng F, Priester S, Munshi MK, et al. Simvastatin stimulates apoptosis in cholangiocarcinoma by inhibition of Rac1 activity. Dig Liver Dis. 2011;43(5):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teraishi F, Zhang L, Guo W, Dong F, Davis JJ, Lin A, et al. Activation of c-Jun NH-terminal kinase (JNK) is required for gemcitabine’s cytotoxic effect in human lung cancer H1299 cells. FEBS Lett. 2005;579(29):6681–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M. Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 1999;59:2457–63.

    CAS  PubMed  Google Scholar 

  34. Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ. Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res. 2004;64:6461–8.

    Article  CAS  PubMed  Google Scholar 

  35. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. U.S.A. 1983;80(14):4218–22.

  36. Fromigué O, Haÿ E, Modrowski D, Bouvet S, Jacquel A, Auberger P, et al. RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ. 2006;13:1845–56.

    Article  PubMed  Google Scholar 

  37. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66(17):8707–14.

    Article  CAS  PubMed  Google Scholar 

  38. Kochuparambil ST, Al-Husein B, Goc A, Soliman S, Somanath PR. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J Pharmacol Exp Ther. 2011;336(2):496–505.

    Article  CAS  PubMed  Google Scholar 

  39. Celec P, Behuliak M. The lack of non-steroid isoprenoids causes oxidative stress in patients with mevalonic aciduria. Med Hypotheses. 2008;70:938–40.

    Article  CAS  PubMed  Google Scholar 

  40. Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol. 2008;8:333–8.

    Article  CAS  PubMed  Google Scholar 

  41. Sandoval-Usme MC, Umaña-Pérez A, Guerra B, Hernández-Perera O, García-Castellano JM, Fernández-Pérez L, et al. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells. PLoS One. 2014;9(1), e87769. doi:10.1371/journal.pone.0087769.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boscher C, Nabi IR. Caveolin-1: role in cell signaling. Adv Exp Med Biol. 2012;729:29–50.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol. 2003;24:9389–404.

    Article  Google Scholar 

  44. Di Vizio D, Sotgia F, Williams TM, Hassan GS, Capozza F, Frank PG, et al. Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biol Ther. 2007;6(8):1263–8.

    Article  PubMed  Google Scholar 

  45. Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 2008;7:2257–67.

    Article  CAS  PubMed  Google Scholar 

  46. Di Vizio D, Solomon KR, Freeman MR. Cholesterol and cholesterol-rich membranes in prostate cancer: an update. Tumori. 2008;94:633–9.

    PubMed  Google Scholar 

  47. Yang G, Truong LD, Wheeler TM, Thompson TC. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 1999;59(22):5719–23.

    CAS  PubMed  Google Scholar 

  48. Li YC, Park MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;168:1107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 2005;115:959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–39.

    Article  CAS  PubMed  Google Scholar 

  51. Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E. Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci. 2002;115:1331–40.

    CAS  PubMed  Google Scholar 

  52. Westover EJ, Covey DF, Brockman HL, Brown RE, Pike LJ. Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J Biol Chem. 2003;278:51125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91:54–69.

    Article  CAS  PubMed  Google Scholar 

  54. Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Ghosh-Choudhury G. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22:749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Duncan RE, El-Sohemy A, Archer MC. Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity. J Biol Chem. 2004;279:33079–84.

    Article  CAS  PubMed  Google Scholar 

  56. Kawata S, Takaishi K, Nagase T, Ito N, Matsuda Y, Tamura S, et al. Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis. Cancer Res. 1990;50(11):3270–3.

    CAS  PubMed  Google Scholar 

  57. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, et al. Genome-wide survey of human alternative premRNA splicing with exon junction microarrays. Science. 2003;302:2141–4.

    Article  CAS  PubMed  Google Scholar 

  58. Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell. 2010;17:348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malenda A, Skrobanska A, Issat T, Winiarska M, Bil J, Oleszczak B, et al. Statins impair glucose uptake in tumor cells. Neoplasia. 2012;14(4):311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bellosta S, Paoletti R, Corsini A. Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation. 2004;109(23 Suppl 1):III50–7.

    PubMed  Google Scholar 

  61. Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8(6):373–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manu KA, Shanmugam MK, Li F, Chen L, Siveen KS, Ahn KS, et al. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J Mol Med (Berl). 2014;92(3):267–76.

    Article  CAS  Google Scholar 

  63. Horiguchi A, Sumitomo M, Asakuma J, Asano T, Asano T, Hayakawa M. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res. 2004;10(24):8648–55.

    Article  CAS  PubMed  Google Scholar 

  64. Jiang P, Mukthavaram R, Chao Y, Nomura N, Bharati IS, Fogal V, et al. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br J Cancer. 2014;111(8):1562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu H, Wang Z, Li Y, Li W, Chen Y. Simvastatin prevents proliferation and bone metastases of lung adenocarcinoma in vitro and in vivo. Neoplasma. 2013;60(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  66. Collisson EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, et al. Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol Cancer Ther. 2003;2(10):941–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Islam M, Sharma S, Kumar B, Teknos TN. Atorvastatin inhibits RhoC function and limits head and neck cancer metastasis. Oral Oncol. 2013;49(8):778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Platz EA, Leitzmann MF, Visvanathan K, Rimm EB, Stampfer MJ, Willett WC, et al. Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst. 2006;98(24):1819–25.

    Article  CAS  PubMed  Google Scholar 

  69. Murtola TJ, Visvanathan K, Artama M, Vainio H, Pukkala E. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014;9(10):e110231. doi:10.1371/journal.pone.0110231.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol. 2014;15(10):e461–8. doi:10.1016/S1470-2045(14)70119-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103(19):1461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang P, Mukthavaram R, Chao Y, Bharati IS, Fogal V, Pastorino S, et al. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med. 2014;12:13.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Han JY, Lee SH, Yoo NJ, Hyung LS, Moon YJ, Yun T, et al. A randomized phase II study of gefitinib plus simvastatin versus gefitinib alone in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2011;17(6):1553–1560.

    Article  CAS  PubMed  Google Scholar 

  74. Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ, et al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer—a plan to move forward. Clin Cancer Res. 2006;12(12):3661–97.

    Article  CAS  PubMed  Google Scholar 

  75. Bjarnadottir O, Romero Q, Bendahl PO, Jirström K, Rydén L, Loman N, et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res Treat. 2013;138(2):499–508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Walis Jones for reading the manuscript. This work was supported by Wroclaw Research Centre EIT+ within the project “Biotechnologies and advanced medical technologies”—BioMed (POIG.01.01.02-02-003/08).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander F. Sikorski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matusewicz, L., Meissner, J., Toporkiewicz, M. et al. The effect of statins on cancer cells—review. Tumor Biol. 36, 4889–4904 (2015). https://doi.org/10.1007/s13277-015-3551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3551-7

Keywords

Navigation