Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 4889–4904 | Cite as

The effect of statins on cancer cells—review

  • Lucyna Matusewicz
  • Justyna Meissner
  • Monika Toporkiewicz
  • Aleksander F. Sikorski
Review

Abstract

Statins [3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, abbreviated HMGCR) inhibitors], are well-known cholesterol-depleting agents. Since the early 1990s, it has been known that statins could be successfully used in cancer therapy, but the exact mechanism(s) of statin activity remains unclear and is now an extensive focus of investigation. So far, it was proven that there are several mechanisms that are activated by statins in cancer cells; some of them are leading to cell death. Statins exert different effects depending on cell line, statin concentration, duration of exposure of cells to statins, and the type of statin being used. It was shown that statins may inhibit the cell cycle by influence on both expression and activity of proteins involved in cell-cycle progression such as cyclins, cyclin-dependent kinases (CDK), and/or inhibitors of CDK. Also, statins may induce apoptosis by both intrinsic and extrinsic pathways. Statin treatment may lead to changes in molecular pathways dependent on the EGF receptor, mainly via inhibition of isoprenoid synthesis. By inhibition of the synthesis of cholesterol, statins may destabilize the cell membrane. Moreover, statins may change the arrangement of transporter OATP1, the localization of HMGCR, and could induce conformational changes in GLUT proteins. In this review, we have tried to gather and compare most of the recent outcomes of the research in this field. We have also attempted to explain why hydrophilic statins are less effective than hydrophobic statins. Finally, we have gathered results from in vivo experiments, presenting the use of statins in combined therapies and discussed a number of molecular targets that could serve as biomarkers predisposing to statin therapy.

Keywords

Statins Cancer Molecular pathways Membrane rafts 

Notes

Acknowledgments

We thank Dr. Walis Jones for reading the manuscript. This work was supported by Wroclaw Research Centre EIT+ within the project “Biotechnologies and advanced medical technologies”—BioMed (POIG.01.01.02-02-003/08).

Conflicts of interest

None

References

  1. 1.
    Brown MS, Faust JR, Goldstein JL. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978;253:1121–8.PubMedGoogle Scholar
  2. 2.
    Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 2002;58(5):555–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Bansback N, Ara R, Ward S, Anis A, Choi HK. Statin therapy in rheumatoid arthritis: a cost-effectiveness and value-of-information analysis. Pharmacoeconomics. 2009;27(1):25–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Y, Bradley AB, Wang D, Reinhardt RA. Statins, bone metabolism and treatment of bone catabolic diseases. Pharmacol Res. 2014;88:53–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Osmak M. Statins and cancer: current and future prospects. Cancer Lett. 2012;324(1):1–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Kubatka P, Kruyliak P, Rotrekl V, Jelinkova S, Mladosievicova B. Statins in oncological research: from experimental studies to clinical practice. Crit Rev Oncol Hematol. 2014;92(3):296–311.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuoka T, Miyakoshi S, Tanzawa K, Nakahara K, Hosobuchi M, Serizawa N. Purification and characterization of cytochrome P450sca from Streptomyces carbophilus. ML-236B (compactin) induces P450sca in Streptomyces carbophilus that hydroxylates ML-236B to pravastatin sodium (CS-514), a tissue-selective inhibitor of 3-hydroxy-3-methylglutaril coenzyme A reductase. Eur J Biochem. 1989;184:707–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Hu M, Tomlinson B. Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opin Drug Metab Toxicol. 2014;10(1):51–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Menter DG, Ramsauer VP, Harirforoosh S, Chakraborty K, Yang P, Hsi L, et al. Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites. PLoS ONE. 2011;6(12):e28813. doi: 10.1371/journal.pone.0028813.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19:117–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Hentosh P, Yuh SH, Elson CE, Peffley DM. Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog. 2001;32:154–66.CrossRefPubMedGoogle Scholar
  13. 13.
    Sivaprasad U, Abbas T, Dutta A. Differential efficacy of 3-hydroxy-3-methylglutaryl CoA reductase inhibitors on the cell cycle of prostate cancer cells. Mol Cancer Ther. 2006;5(9):2310–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26(5):883–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Marcelli M, Cunningham GR, Haidacher SJ, Padayatty SJ, Sturgis L, Kagan C, et al. Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res. 1998;58:76–83.PubMedGoogle Scholar
  16. 16.
    Qi X-F, Zheng L, Lee K-J, Kim D-H, Kim C-S, Cai D-Q, et al. HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death Dis. 2013;4:e518. doi: 10.1038/cddis.2013.44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Song X, Liu BC, Lu XY, Yang LL, Zhai YJ, Eaton AF, et al. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression. Biochim Biophys Acta. 2014;1843(5):894–901.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Horiguchi A, Sumitomo M, Asakuma J, Asano T, Asano T, Hayakawa M. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res. 2004;10:8648–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Denoyelle C, Vasse M, Körner M, Mishal Z, Ganné F, Vannier JP, et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: an in vitro study. Carcinogenesis. 2001;22(8):1139–48.CrossRefPubMedGoogle Scholar
  20. 20.
    Spampanato C, De Maria S, Sarnataro M, Giordano E, Zanfardino M, Baiano S, et al. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol. 2012;40(4):935–41.PubMedGoogle Scholar
  21. 21.
    Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K. Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. PNAS USA. 1999;96:7797–802.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tu YS, Kang XL, Zhou JG, Lv XF, Tang YB, Guan YY. Involvement of Chk1-Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. Eur J Pharmacol. 2011;670:356–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Yu X, Luo Y, Zhou Y, Zhang Q, Wang J, Wei N, et al. BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: analyses using a breast cancer cell line and tumoral xenograft model. Int J Oncol. 2008;33(3):555–63.PubMedGoogle Scholar
  24. 24.
    Herrero-Martin G, Lopez-Rivas A. Statins activate a mitochondria-operated pathway of apoptosis in breast tumor cells by a mechanism regulated by ErbB2 and dependent on the prenylation of proteins. FEBS Lett. 2008;582:2589–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by lovastatin through activation of caspase-3 and DNAse II in leukaemia HL-60 cells. Pharmacol Toxicol. 2000;86:83–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu Y, Casey PJ, Kumar AP, Pervaiz S. Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell Death Dis. 2013;4:e568. doi: 10.1038/cddis.2013.103.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miller T, Yang F, Wise CE, Meng F, Priester S, Munshi MK, et al. Simvastatin stimulates apoptosis in cholangiocarcinoma by inhibition of Rac1 activity. Dig Liver Dis. 2011;43(5):395–403.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gniadecki R. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun. 2004;320:165–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Helbig G, Hołowiecki J. Ras signaling pathway as a target for farnesyltransferase inhibitors—a new, promising prospects in the treatment for malignant disorders. Rev Pol Wiad Lek. 2004;57(9–10):462–7.Google Scholar
  30. 30.
    Engers R, Springer E, Michiels F, Collard JG, Gabbert HE. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem. 2001;276:41889–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Miller T, Yang F, Wise CE, Meng F, Priester S, Munshi MK, et al. Simvastatin stimulates apoptosis in cholangiocarcinoma by inhibition of Rac1 activity. Dig Liver Dis. 2011;43(5):395–403.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Teraishi F, Zhang L, Guo W, Dong F, Davis JJ, Lin A, et al. Activation of c-Jun NH-terminal kinase (JNK) is required for gemcitabine’s cytotoxic effect in human lung cancer H1299 cells. FEBS Lett. 2005;579(29):6681–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M. Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 1999;59:2457–63.PubMedGoogle Scholar
  34. 34.
    Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ. Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res. 2004;64:6461–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. U.S.A. 1983;80(14):4218–22.Google Scholar
  36. 36.
    Fromigué O, Haÿ E, Modrowski D, Bouvet S, Jacquel A, Auberger P, et al. RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ. 2006;13:1845–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66(17):8707–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Kochuparambil ST, Al-Husein B, Goc A, Soliman S, Somanath PR. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J Pharmacol Exp Ther. 2011;336(2):496–505.CrossRefPubMedGoogle Scholar
  39. 39.
    Celec P, Behuliak M. The lack of non-steroid isoprenoids causes oxidative stress in patients with mevalonic aciduria. Med Hypotheses. 2008;70:938–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol. 2008;8:333–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Sandoval-Usme MC, Umaña-Pérez A, Guerra B, Hernández-Perera O, García-Castellano JM, Fernández-Pérez L, et al. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells. PLoS One. 2014;9(1), e87769. doi: 10.1371/journal.pone.0087769.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Boscher C, Nabi IR. Caveolin-1: role in cell signaling. Adv Exp Med Biol. 2012;729:29–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol. 2003;24:9389–404.CrossRefGoogle Scholar
  44. 44.
    Di Vizio D, Sotgia F, Williams TM, Hassan GS, Capozza F, Frank PG, et al. Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biol Ther. 2007;6(8):1263–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 2008;7:2257–67.CrossRefPubMedGoogle Scholar
  46. 46.
    Di Vizio D, Solomon KR, Freeman MR. Cholesterol and cholesterol-rich membranes in prostate cancer: an update. Tumori. 2008;94:633–9.PubMedGoogle Scholar
  47. 47.
    Yang G, Truong LD, Wheeler TM, Thompson TC. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 1999;59(22):5719–23.PubMedGoogle Scholar
  48. 48.
    Li YC, Park MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;168:1107–18.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest. 2005;115:959–68.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–39.CrossRefPubMedGoogle Scholar
  51. 51.
    Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E. Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci. 2002;115:1331–40.PubMedGoogle Scholar
  52. 52.
    Westover EJ, Covey DF, Brockman HL, Brown RE, Pike LJ. Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J Biol Chem. 2003;278:51125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91:54–69.CrossRefPubMedGoogle Scholar
  54. 54.
    Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Ghosh-Choudhury G. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22:749–58.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Duncan RE, El-Sohemy A, Archer MC. Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity. J Biol Chem. 2004;279:33079–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Kawata S, Takaishi K, Nagase T, Ito N, Matsuda Y, Tamura S, et al. Increase in the active form of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human hepatocellular carcinoma: possible mechanism for alteration of cholesterol biosynthesis. Cancer Res. 1990;50(11):3270–3.PubMedGoogle Scholar
  57. 57.
    Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, et al. Genome-wide survey of human alternative premRNA splicing with exon junction microarrays. Science. 2003;302:2141–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell. 2010;17:348–61.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Malenda A, Skrobanska A, Issat T, Winiarska M, Bil J, Oleszczak B, et al. Statins impair glucose uptake in tumor cells. Neoplasia. 2012;14(4):311–23.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bellosta S, Paoletti R, Corsini A. Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation. 2004;109(23 Suppl 1):III50–7.PubMedGoogle Scholar
  61. 61.
    Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8(6):373–418.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Manu KA, Shanmugam MK, Li F, Chen L, Siveen KS, Ahn KS, et al. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J Mol Med (Berl). 2014;92(3):267–76.CrossRefGoogle Scholar
  63. 63.
    Horiguchi A, Sumitomo M, Asakuma J, Asano T, Asano T, Hayakawa M. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res. 2004;10(24):8648–55.CrossRefPubMedGoogle Scholar
  64. 64.
    Jiang P, Mukthavaram R, Chao Y, Nomura N, Bharati IS, Fogal V, et al. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br J Cancer. 2014;111(8):1562–71.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Liu H, Wang Z, Li Y, Li W, Chen Y. Simvastatin prevents proliferation and bone metastases of lung adenocarcinoma in vitro and in vivo. Neoplasma. 2013;60(3):240–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Collisson EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, et al. Atorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol Cancer Ther. 2003;2(10):941–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Islam M, Sharma S, Kumar B, Teknos TN. Atorvastatin inhibits RhoC function and limits head and neck cancer metastasis. Oral Oncol. 2013;49(8):778–86.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Platz EA, Leitzmann MF, Visvanathan K, Rimm EB, Stampfer MJ, Willett WC, et al. Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst. 2006;98(24):1819–25.CrossRefPubMedGoogle Scholar
  69. 69.
    Murtola TJ, Visvanathan K, Artama M, Vainio H, Pukkala E. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014;9(10):e110231. doi: 10.1371/journal.pone.0110231.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol. 2014;15(10):e461–8. doi: 10.1016/S1470-2045(14)70119-6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103(19):1461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jiang P, Mukthavaram R, Chao Y, Bharati IS, Fogal V, Pastorino S, et al. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med. 2014;12:13.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Han JY, Lee SH, Yoo NJ, Hyung LS, Moon YJ, Yun T, et al. A randomized phase II study of gefitinib plus simvastatin versus gefitinib alone in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2011;17(6):1553–1560.CrossRefPubMedGoogle Scholar
  74. 74.
    Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ, et al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer—a plan to move forward. Clin Cancer Res. 2006;12(12):3661–97.CrossRefPubMedGoogle Scholar
  75. 75.
    Bjarnadottir O, Romero Q, Bendahl PO, Jirström K, Rydén L, Loman N, et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res Treat. 2013;138(2):499–508.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Lucyna Matusewicz
    • 1
  • Justyna Meissner
    • 1
  • Monika Toporkiewicz
    • 1
  • Aleksander F. Sikorski
    • 1
  1. 1.Laboratory of Cytobiochemistry, Faculty of BiotechnologyUniversity of WroclawWrocławPoland

Personalised recommendations