Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8601–8607 | Cite as

Thyroid carcinoma cells produce PLGF to enhance metastasis

Research Article

Abstract

Cancer neovascularization is essential for metastasis of thyroid carcinoma. However, the underlying molecular mechanisms are ill-defined. Recently, placental growth factor (PLGF) has been shown to play critical roles in the pathological angiogenesis through regulating matrix metalloproteinases (MMPs); here, we were prompted to examine the role of PLGF in the metastasis of thyroid carcinoma. We found that the PLGF and MMP9 levels strongly correlated in the thyroid carcinoma specimen. Higher PLGF and MMP9 levels were detected in the thyroid carcinoma with metastasis. Using a human thyroid carcinoma cell line, TT, we found that overexpression of PLGF in TT cells increased expression of MMP9, while inhibition of PLGF in TT cells decreased expression of MMP9. However, modification of MMP9 levels in TT cells did not affect PLGF levels, suggesting that PLGF may regulate MMP9 in thyroid carcinoma cells. Moreover, application of a specific MAPK p42/p44 inhibitor, but not the application of a specific MAPK p38 inhibitor or specific Akt or JNK inhibitors, substantially abolished the effect of PLGF on MMP9 activation, suggesting that PLGF may increase expression of MMP9 via p42/p44 signaling pathway. Together, these data suggest that antagonizing PLGF in thyroid carcinoma cells may be a promising therapy to suppress cancer metastasis.

Keywords

Placental growth factor (PLGF) Matrix metalloproteinases 9 (MMP9) Thyroid carcinoma Metastasis 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (NO: 81001201).

Conflicts of interest

None

References

  1. 1.
    Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, et al. Mir-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cell Physiol Biochem. 2015;35:71–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Ulbrich C, Pietsch J, Grosse J, Wehland M, Schulz H, Saar K, et al. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem. 2011;28:185–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang F, Wang P, Wang B, Fu ZJ, Yuan Y, Yan SL, et al. Association between TP53 ARG72PRO polymorphism and thyroid carcinoma risk. Tumour Biol. 2014;35:2723–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang H, Li YP, Chen JH, Yuan SF, Wang L, Zhang JL, et al. Prognostic significance of USP22 as an oncogene in papillary thyroid carcinoma. Tumour Biol. 2013;34:1635–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim JG. Molecular targeted therapy for advanced gastric cancer. Korean J Intern Med. 2013;28:149–55.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ilson DH. Angiogenesis in gastric cancer: hitting the target? Lancet. 2014;383:4–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Scartozzi M, Giampieri R, Loretelli C, Bittoni A, Mandolesi A, Faloppi L, et al. Tumor angiogenesis genotyping and efficacy of first-line chemotherapy in metastatic gastric cancer patients. Pharmacogenomics. 2013;14:1991–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim S, Oh SJ, Lee J, Han J, Jeon M, Jung T, et al. Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells. Cell Physiol Biochem. 2013;32:1541–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhu X, Er K, Mao C, Yan Q, Xu H, Zhang Y, et al. Mir-203 suppresses tumor growth and angiogenesis by targeting VEGFa in cervical cancer. Cell Physiol Biochem. 2013;32:64–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci. 2013;34:233–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huo X, Li Y, Jiang Y, Sun X, Gu L, Guo W, et al. Inhibition of ocular neovascularization by co-inhibition of VEGF-a and PLGF. Cell Physiol Biochem. 2015;35:1787–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang J, Wu Y, Chen A, Zhao Q. Mesenchymal stem cells promote cardiac muscle repair via enhanced neovascularization. Cell Physiol Biochem. 2015;35:1219–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem. 2013;31:761–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen Y, Jiang T, Mao A, Xu J. Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation. Tumour Biol. 2014;35:12749–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou X, Qi Y. Plgf inhibition impairs metastasis of larynx carcinoma through mmp3 downregulation. Tumour Biol. 2014;35:9381–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D, et al. Placenta growth factor-1 antagonizes vegf-induced angiogenesis and tumor growth by the formation of functionally inactive plgf-1/vegf heterodimers. Cancer Cell. 2002;1:99–108.CrossRefPubMedGoogle Scholar
  21. 21.
    Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (mmp) in cancer. Arkh Patol. 2002;64:47–53.PubMedGoogle Scholar
  22. 22.
    Rhee JS, Coussens LM. RECKing MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.CrossRefPubMedGoogle Scholar
  23. 23.
    Grosse J, Warnke E, Pohl F, Magnusson NE, Wehland M, Infanger M, et al. Impact of sunitinib on human thyroid cancer cells. Cell Physiol Biochem. 2013;32:154–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Alcantara MB, Dass CR. Regulation of mt1-mmp and mmp-2 by the serpin pedf: a promising new target for metastatic cancer. Cell Physiol Biochem. 2013;31:487–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang C, Li C, Zhu M, Zhang Q, Xie Z, Niu G, et al. Meta-analysis of mmp2, mmp3, and mmp9 promoter polymorphisms and head and neck cancer risk. PLoS One. 2013;8:e62023.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mendes O, Kim HT, Stoica G. Expression of mmp2, mmp9 and mmp3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005;22:237–46.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang R, Ke ZF, Wang F, Zhang WH, Wang YF, Li SH, et al. Golph3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating mmp-2 and mmp-9. Cell Physiol Biochem. 2015;35:969–82.CrossRefPubMedGoogle Scholar
  28. 28.
    Jian H, Zhao Y, Liu B, Lu S. Sema4b inhibits mmp9 to prevent metastasis of non-small cell lung cancer. Tumour Biol. 2014;35:11051–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Pei J, Lou Y, Zhong R, Han B. Mmp9 activation triggered by epidermal growth factor induced foxo1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Song H, Tian Z, Qin Y, Yao G, Fu S, Geng J. Astrocyte elevated gene-1 activates mmp9 to increase invasiveness of colorectal cancer. Tumour Biol. 2014;35:6679–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits egfr-signaling-dependent mmp9 activation via suppressing akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Behr TM, Wulst E, Radetzky S, Blumenthal RD, Dunn RM, Gratz S, et al. Improved treatment of medullary thyroid cancer in a nude mouse model by combined radioimmunochemotherapy: doxorubicin potentiates the therapeutic efficacy of radiolabeled antibodies in a radioresistant tumor type. Cancer Res. 1997;57:5309–19.PubMedGoogle Scholar
  33. 33.
    Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase b/akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor fkhr1. Proc Natl Acad Sci U S A. 1999;96:7421–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Department of OtolaryngologyZhongshan Hospital, Fudan UniversityShanghaiChina

Personalised recommendations