Tumor Biology

, Volume 36, Issue 11, pp 8931–8942 | Cite as

Bmi-1 is essential for the oncogenic potential in CD133+ human laryngeal cancer cells

  • Xudong Wei
  • Jian He
  • Jingyu Wang
  • Xiaolong Yang
  • Bingjuan Ma
Research Article


It has been hypothesized that cancer stem cells (CSCs) are a principal culprit of tumor initiation, invasion, metastasis, and treatment resistance. Previous studies have confirmed that cancer stem cells can be detected in laryngeal carcinoma. This study aimed to evaluate whether population of CD133+ cells that existed in primary human laryngeal carcinoma have characteristic of CSCs with enhanced capacity of proliferation and invasion, and to understand whether and how Bmi-1 implicated in self-renewal and tumorigenesis. We clarified the tumorigenic potential of CD133 sorted populations of cancer cells derived from primary human laryngeal tumor sample. After fluorescence activated cell sorting, real-time polymerase chain reaction (PCR) and western blot confirmed Bmi-1 was differentially expressed in CD133 sorted laryngeal tumor cells. Bmi-1 was knocked down, and proliferation, colony formation, invasion, cell cycle assay, and apoptosis assays were performed, and the impact on Bmi-1 pathway was evaluated. It was found that CD133+ cells existed in primary human laryngeal tumor with enhanced capacity of proliferation and invasion. Bmi-1, implicated in self-renewal and tumorigenesis, was coexpressed with the CD133. Furthermore, knockdown of Bmi-1 expression in CD133+ cells led to inhibition of cell growth, colony formation, cell invasion in vitro, and tumorigenesis in vivo, through up-regulation of p16INK4A and p14ARF. Our data indicate that Bmi-1 expression is central to the tumorigenicity of CD133+ cells, which functions as a pleiotropic regulator that maintains the viability and proliferative capacity of human laryngeal tumor. It negatively regulates the transcription of the downstream INK4a/ARF gene and inhibits expression of P16ink4a/P14ARF, so as to maintain the high ability of proliferation and differentiation in laryngeal cancer stem cells.


Laryngeal carcinoma Cancer stem cells Bmi-1 gene 



The study was funded by the National Natural Science Foundation of China (no. 81060224), Technology Research and Development Plan of Gansu Province (no. 1205TCYA043), and Foundation of Lanzhou Science and Technology Development Plan (no. 2013-3-31).

Conflicts of interests



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90.Google Scholar
  2. 2.
    Rudolph E, Dyckhoff G, Becher H, Dietz A, Ramroth H. Effects of tumour stage, comorbidity and therapy on survival of laryngeal cancer patients: a systematic review and a meta-analysis. Eur Arch Otorhinolaryngol. 2011;268(2):165–79.CrossRefPubMedGoogle Scholar
  3. 3.
    Islami F, Tramacere I, Rota M, Bagnardi V, Fedirko V, Scotti L, et al. Alcohol drinking and laryngeal cancer: overall and dose-risk relation—a systematic review and meta-analysis. Oral Oncol. 2010;46(11):802–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest. 2010;120(1):41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355–78.CrossRefPubMedGoogle Scholar
  6. 6.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.PubMedGoogle Scholar
  7. 7.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMedGoogle Scholar
  8. 8.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  9. 9.
    Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope. 2007;117(3):455–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Wei XD, Zhou L, Cheng L, Tian J, Jiang JJ, Maccallum J. In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head Neck. 2009;31(1):94–101.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen H, Zhou L, Dou T, Wan G, Tang H, Tian J. Bmi-1’s maintenance of the proliferative capacity of laryngeal cancer stem cells. Head Neck. 2011;33(8):1115–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999;13(20):2678–90.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423(6937):255–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30(3):372–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Allegra E, Trapasso S, Pisani D, Puzzo L. The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: a review. Oncology. 2014;86(4):199–205.CrossRefPubMedGoogle Scholar
  16. 16.
    Dan Y, Jin C, Liu Y, Yang J, Zhao Y, Wang H. Clinical implications of cancer stem cell-like side population cells in human laryngeal cancer. Tumor Biol. 2013;34:3603–10.CrossRefGoogle Scholar
  17. 17.
    Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res. 2005;576(1–2):22–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 2007;98(5):629–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463(7283):893–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116(2):221–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.CrossRefPubMedGoogle Scholar
  22. 22.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104(3):973–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7(6):682–93.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhu D, Wan X, Huang H, Chen X, Liang W, Zhao F, et al. Knockdown of Bmi1 inhibits the stemness properties and tumorigenicity of human bladder cancer stem cell-like side population cells. Oncol Rep. 2014;31(2):727–36.PubMedGoogle Scholar
  26. 26.
    Chen YC, Chang CJ, Hsu HS, Chen YW, Tai LK, Tseng LM, et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol. 2010;46(3):158–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226(2):352–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Meng S, Luo M, Sun H, Yu X, Shen M, Zhang Q, et al. Identification and characterization of Bmi-1-responding element within the human p16 promoter. J Biol Chem. 2010;285(43):33219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423(15):255–60.CrossRefPubMedGoogle Scholar
  32. 32.
    In-kyung P, Dalong Q, Mark K, Becker MW, Michael P, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423(15):302–5.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xudong Wei
    • 1
  • Jian He
    • 1
  • Jingyu Wang
    • 2
  • Xiaolong Yang
    • 1
  • Bingjuan Ma
    • 1
  1. 1.Department of Otolaryngology–Head and Neck Surgery, Gansu ProvinceGansu Provincial HospitalLanzhouChina
  2. 2.Institute of PathophysiologyLanzhou UniversityLanzhouChina

Personalised recommendations