Advertisement

Tumor Biology

, Volume 37, Issue 2, pp 1651–1662 | Cite as

HIF-2α regulates CDCP1 to promote PKCδ-mediated migration in hepatocellular carcinoma

  • Manqing Cao
  • Junrong Gao
  • Hongyuan Zhou
  • Jiafei Huang
  • Abin You
  • Zhigui Guo
  • Feng Fang
  • Wei Zhang
  • Tianqiang Song
  • Ti Zhang
Research Article

Abstract

Overexpression of CUB domain-containing protein 1 (CDCP1), a transmembrane glycoprotein and major substrate of Src family kinases (SFKs), always indicates unfavorable outcomes in various cancers. The characteristics of CDCP1 in hepatocellular carcinoma (HCC) have not been assessed. Most recently, CDCP1 was identified as a specific target gene of HIF-2α in clear cell renal carcinoma (CC-RCC). However, considering the role of HIF-2α in the progression of HCC is highly controversial, it is necessary to figure out whether HIF-2α and CDCP1 play a significant part in the metastasis of HCC. Our results showed that HIF-2α and CDCP1 were both induced by hypoxia, and the activation of CDCP1 was HIF-2α dependent. CDCP1 was governed by HIF-2α at mRNA and protein levels in HCC cell lines. Moreover, knocking down of HIF-2α not only inhibited cell invasion but also impaired the expression of Tyr311 phosphorylation of protein kinase Cδ (PKCδ) which is a downstream factor of CDCP1 and has been reported to induce malignant migration in various tumors. Analysis of human HCC samples showed a negative correlation of CDCP1 expression with disease-free survival, and CDCP1 was an independent prognostic factors of disease-free survival. Taken together, these data demonstrated that HIF-2α could promote HCC cell migration by regulating CDCP1, and targeting HIF-2α-CDCP1-PKCδ pathway might be effective to inhibit HCC metastasis.

Keywords

HIF-2α CDCP1 PKCδ Hepatocellular carcinoma Metastasis 

Notes

Acknowledgments

We thank Prof. Ning Zhang (the vice president of Tianjin Medical University, PhD of the Medical College of Johns Hopkins University) for experimental support. This work was supported by the National Natural Science Foundation of China (No.81372635; No.81101871 and No.81201644) and Major Program of National Natural Science Foundation of Tianjin (No. 11JCZDJC18800).

Conflicts of interest

None.

References

  1. 1.
    Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62. doi: 10.1002/jcb.22214.CrossRefPubMedGoogle Scholar
  2. 2.
    Silvan U, Diez-Torre A, Arluzea J, Andrade R, Silio M, Arechaga J. Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differ; Res Biol Divers. 2009;78(2–3):159–68. doi: 10.1016/j.diff.2009.06.002.CrossRefGoogle Scholar
  3. 3.
    Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N, et al. Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology. 2010;51(6):2183–92. doi: 10.1002/hep.23597.CrossRefPubMedGoogle Scholar
  4. 4.
    Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI. Hypoxia-inducible factor-2 alpha (HIF-2 alpha) induces angiogenesis in breast carcinomas. Appl Immunohistochem Molec Morphol : AIMM / Off Public Soc Appl Immunohistochem. 2006;14(1):78–82. doi: 10.1097/01.pai.0000145182.98577.10.CrossRefGoogle Scholar
  5. 5.
    Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res. 2002;62(5):1326–9.PubMedGoogle Scholar
  6. 6.
    Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 2006;10(5):413–23. doi: 10.1016/j.ccr.2006.08.026.CrossRefPubMedGoogle Scholar
  7. 7.
    Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol. 2006;26(9):3514–26. doi: 10.1128/MCB.26.9.3514-3526.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85(6):881–90. doi: 10.1054/bjoc.2001.2018.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(13):5675–86. doi: 10.1128/MCB.25.13.5675-5686.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, et al. Hypoxia-inducible factor-2alpha activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 2012;72(9):2285–93. doi: 10.1158/0008-5472.CAN-11-3836.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sun HX, Xu Y, Yang XR, Wang WM, Bai H, Shi RY, et al. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/ E2F transcription factor 1-dependent apoptotic pathway. Hepatology. 2013;57(3):1088–97. doi: 10.1002/hep.26188.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, Jing S. Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol : WJG. 2007;13(23):3176–82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bangoura G, Yang LY, Huang GW, Wang W. Expression of HIF-2alpha/EPAS1 in hepatocellular carcinoma. World J Gastroenterol : WJG. 2004;10(4):525–30.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu Y, Yan X, Xu Y, Luo F, Ye J, Yan H, et al. HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT. Tumour Biol : J Int Soc Oncodev Biol Med. 2014;35(8):8103–14. doi: 10.1007/s13277-014-2056-0.CrossRefGoogle Scholar
  15. 15.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203. doi: 10.1016/j.cell.2007.11.025.CrossRefPubMedGoogle Scholar
  16. 16.
    Scherl-Mostageer M, Sommergruber W, Abseher R, Hauptmann R, Ambros P, Schweifer N. Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer. Oncogene. 2001;20(32):4402–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Awakura Y, Nakamura E, Takahashi T, Kotani H, Mikami Y, Kadowaki T, et al. Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma. J Cancer Res Clin Oncol. 2008;134(12):1363–9. doi: 10.1007/s00432-008-0412-4.CrossRefPubMedGoogle Scholar
  18. 18.
    Razorenova OV, Finger EC, Colavitti R, Chernikova SB, Boiko AD, Chan CK, et al. VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKC{delta}-driven migration. Proc Natl Acad Sci U S A. 2011;108(5):1931–6. doi: 10.1073/pnas.1011777108.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Seidel J, Kunc K, Possinger K, Jehn C, Luftner D. Effect of the tyrosine kinase inhibitor lapatinib on CUB-domain containing protein (CDCP1)-mediated breast cancer cell survival and migration. Biochem Biophys Res Commun. 2011;414(1):226–32. doi: 10.1016/j.bbrc.2011.09.062.CrossRefPubMedGoogle Scholar
  20. 20.
    Perry SE, Robinson P, Melcher A, Quirke P, Buhring HJ, Cook GP, et al. Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells. FEBS Lett. 2007;581(6):1137–42. doi: 10.1016/j.febslet.2007.02.025.CrossRefPubMedGoogle Scholar
  21. 21.
    Miyazawa Y, Uekita T, Hiraoka N, Fujii S, Kosuge T, Kanai Y, et al. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res. 2010;70(12):5136–46. doi: 10.1158/0008-5472.CAN-10-0220.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu H, Ong SE, Badu-Nkansah K, Schindler J, White FM, Hynes RO. CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci U S A. 2011;108(4):1379–84. doi: 10.1073/pnas.1017228108.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Uekita T, Jia L, Narisawa-Saito M, Yokota J, Kiyono T, Sakai R. CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma. Mol Cell Biol. 2007;27(21):7649–60. doi: 10.1128/MCB.01246-07.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ikeda J, Oda T, Inoue M, Uekita T, Sakai R, Okumura M, et al. Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci. 2009;100(3):429–33. doi: 10.1111/j.1349-7006.2008.01066.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Emerling BM, Benes CH, Poulogiannis G, Bell EL, Courtney K, Liu H, et al. Identification of CDCP1 as a hypoxia-inducible factor 2alpha (HIF-2alpha) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proc Natl Acad Sci U S A. 2013;110(9):3483–8. doi: 10.1073/pnas.1222435110.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell. 2005;121(2):271–80. doi: 10.1016/j.cell.2005.02.019.CrossRefPubMedGoogle Scholar
  27. 27.
    Uekita T, Tanaka M, Takigahira M, Miyazawa Y, Nakanishi Y, Kanai Y, et al. CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma. Am J Pathol. 2008;172(6):1729–39. doi: 10.2353/ajpath.2008.070981.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol : WJG. 2001;7(5):630–6.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Dong Y, He Y, de Boer L, Stack MS, Lumley JW, Clements JA, et al. The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration. J Biol Chem. 2012;287(13):9792–803. doi: 10.1074/jbc.M111.335448.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Befani C, Mylonis I, Gkotinakou IM, Georgoulias P, Hu CJ, Simos G, et al. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells. Int J Biochem Cell Biol. 2013;45(11):2359–68. doi: 10.1016/j.biocel.2013.07.025.CrossRefPubMedGoogle Scholar
  31. 31.
    He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I, et al. Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem. 2010;285(34):26162–73. doi: 10.1074/jbc.M109.096453.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Brenner W, Greber I, Gudejko-Thiel J, Beitz S, Schneider E, Walenta S, et al. Migration of renal carcinoma cells is dependent on protein kinase Cdelta via beta1 integrin and focal adhesion kinase. Int J Oncol. 2008;32(5):1125–31.PubMedGoogle Scholar
  33. 33.
    Hooper JD, Zijlstra A, Aimes RT, Liang H, Claassen GF, Tarin D, et al. Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene. 2003;22(12):1783–94. doi: 10.1038/sj.onc.1206220.CrossRefPubMedGoogle Scholar
  34. 34.
    Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12(1):9–22. doi: 10.1038/nrc3183.Google Scholar
  35. 35.
    Wu XH, Qian C, Yuan K. Correlations of hypoxia-inducible factor-1alpha/hypoxia-inducible factor-2alpha expression with angiogenesis factors expression and prognosis in non-small cell lung cancer. Chin Med J. 2011;124(1):11–8.PubMedGoogle Scholar
  36. 36.
    Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, et al. Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 2008;68(22):9212–20. doi: 10.1158/0008-5472.CAN-08-1135.CrossRefPubMedGoogle Scholar
  37. 37.
    Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, et al. HIF-1alpha and HIF-2alpha are differentially regulated in vivo in neuroblastoma: high HIF-1alpha correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res : Off J Am Assoc Cancer Res. 2009;15(23):7130–6. doi: 10.1158/1078-0432.CCR-09-0223.CrossRefGoogle Scholar
  38. 38.
    Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47. doi: 10.1016/j.ccr.2007.02.006.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Manqing Cao
    • 1
  • Junrong Gao
    • 2
  • Hongyuan Zhou
    • 1
  • Jiafei Huang
    • 1
  • Abin You
    • 1
  • Zhigui Guo
    • 1
  • Feng Fang
    • 1
  • Wei Zhang
    • 1
  • Tianqiang Song
    • 1
  • Ti Zhang
    • 1
  1. 1.Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalHexi DistrictPeople’s Republic of China
  2. 2.Academy of Medical ImageTianjin Medical UniversityTianjinPeople’s Republic of China

Personalised recommendations