Skip to main content

Advertisement

Log in

Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Expression of the protein deacetylase SIRT1 is associated with either poor or favorable prognosis in cancer patients, depending on the cancer type. In head and neck squamous cell carcinoma (HNSCC), SIRT1 expression is associated with favorable prognosis. However, the molecular mechanism underlying the tumor-suppressive function of SIRT1 in HNSCC is unknown. SIRT1 promotes differentiation in epithelial cells; therefore, we investigated whether SIRT1 promotes differentiation in HNSCC cells by studying the correlations between the expression of SIRT1 and several genes implicated in stemness or differentiation in HNSCC-derived cell lines. Our results suggest that SIRT1 does not contribute to differentiation in HNSCC cells. RNA interference-mediated reduction of SIRT1 revealed that SIRT1 supports the expression of TAp63, which has been implicated in tumor suppression, in addition to epithelial differentiation. A positive correlation was observed between SIRT1 and TAp63 expression in HNSCC tissues, as determined by quantitative reverse transcription-polymerase chain reaction analysis of RNA extracted from formalin-fixed paraffin-embedded biopsy samples. Together, these results suggest that although SIRT1 does not regulate differentiation of HNSCC cells, it functions as a tumor suppressor in HNSCC by supporting the transcription of tumor-suppressive TAp63. This finding supports the notion that SIRT1-activating drugs could be useful for the treatment of HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35. doi:10.1146/annurev.biochem.73.011303.073651.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta. 2010;1804(8):1666–75. doi:10.1016/j.bbapap.2009.10.022.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan H, Su L, Chen WY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther. 2013;6:1399–416. doi:10.2147/OTT.S37750.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95. doi:10.1146/annurev.pathol.4.110807.092250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287(51):42444–52. doi:10.1074/jbc.R112.402768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010;10(12):819–23. doi:10.1038/nrc2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villalba JM, Alcain FJ. Sirtuin activators and inhibitors. Biofactors. 2012;38(5):349–59. doi:10.1002/biof.1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene. 2014;33(13):1609–20. doi:10.1038/onc.2013.120.

    Article  CAS  PubMed  Google Scholar 

  9. Noguchi A, Li X, Kubota A, Kikuchi K, Kameda Y, Zheng H, et al. SIRT1 expression is associated with good prognosis for head and neck squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(3):385–92. doi:10.1016/j.oooo.2012.12.013.

    Article  PubMed  Google Scholar 

  10. Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013;34(3):1847–54. doi:10.1007/s13277-013-0726-y.

    Article  CAS  PubMed  Google Scholar 

  11. Chen IC, Chiang WF, Huang HH, Chen PF, Shen YY, Chiang HC. Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol Cancer. 2014;13:254. doi:10.1186/1476-4598-13-254.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jang KY, Kim KS, Hwang SH, Kwon KS, Kim KR, Park HS, et al. Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology. 2009;41(4):366–71. doi:10.1080/00313020902884451.

    Article  CAS  PubMed  Google Scholar 

  13. Cha EJ, Noh SJ, Kwon KS, Kim CY, Park BH, Park HS, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 2009;15:4453–9. doi:10.1158/1078-0432.CCR-08-3329.

    Article  CAS  PubMed  Google Scholar 

  14. Lee H, Kim KR, Noh SJ, Park HS, Kwon KS, Park BH, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol. 2011;42:204–13. doi:10.1016/j.humpath.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  15. Chen HC, Jeng YM, Yuan RH, Hsu HC, Chen YL. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 2012;19(6):2011–9. doi:10.1245/s10434-011-2159-4.

    Article  PubMed  Google Scholar 

  16. Noguchi A, Kikuchi K, Zheng H, Takahashi H, Miyagi Y, Aoki I, et al. SIRT1 expression is associated with a poor prognosis, whereas DBC1 is associated with favorable outcomes in gastric cancer. Cancer Med. 2014;3(6):1553–61. doi:10.1002/cam4.310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nosho K, Shima K, Irahara N, Kure S, Firestein R, Baba Y, et al. SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol. 2009;22:922–32. doi:10.1038/modpathol.2009.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jang SH, Min KW, Paik SS, Jang KS. Loss of SIRT1 histone deacetylase expression associates with tumour progression in colorectal adenocarcinoma. J Clin Pathol. 2012;65(8):735–9. doi:10.1136/jclinpath-2012-200685.

    Article  PubMed  Google Scholar 

  19. Kikuchi K, Noguchi A, Takahashi H, Zheng H, Kameda Y, Sekiguchi H, et al. High SIRT1 expression and low DBC1 expression are associated with poor prognosis in colorectal cancer. J Cancer Therapeut Res. 2013;2:1–8. doi:10.7243/2050-120X-2-1.

    Article  Google Scholar 

  20. Jung W, Hong KD, Jung WY, Lee E, Shin BK, Kim HK, et al. SIRT1 expression is associated with good prognosis in colorectal cancer. Korean J Pathol. 2013;47(4):332–9. doi:10.4132/KoreanJPathol.2013.47.4.332.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lv L, Shen Z, Zhang J, Zhang H, Dong J, Yan Y, et al. Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma. Med Oncol. 2014;31(6):965. doi:10.1007/s12032-014-0965-9.

    Article  PubMed  Google Scholar 

  22. Milner J. Cellular regulation of SIRT1. Curr Pharmaceut Des. 2009;15:39–44. doi:10.2174/138161209787185841.

    Article  CAS  Google Scholar 

  23. Deng C. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009;5:147–52. doi:10.7150/ijbs.5.147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosch-Presegué L, Vaquero A. The dual role of sirtuins in cancer. Genes Cancer. 2011;2:648–62. doi:10.1177/1947601911417862.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blander G, Bhimavarapu A, Mammone T, Maes D, Elliston K, Reich C, et al. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol. 2009;129(1):41–9. doi:10.1038/jid.2008.179.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan J, Minter-Dykhouse K, Lou Z. A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol. 2009;185(2):203–11. doi:10.1083/jcb.200809167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B, et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 2011;43(11):1573–81. doi:10.1016/j.biocel.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  28. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A. 2012;109(4):E187–196. doi:10.1073/pnas.1105304109.

    Article  CAS  PubMed  Google Scholar 

  29. Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer. 2008;8(3):234–42. doi:10.1038/nrc2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 2010;143(2):313–24. doi:10.1016/j.cell.2010.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evers DL, He J, Kim YH, Mason JT, O’Leary TJ. Paraffin embedding contributes to RNA aggregation, reduced RNA yield, and low RNA quality. J Mol Diagn. 2011;13(6):687–94. doi:10.1016/j.jmoldx.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, et al. TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle. 2007;6(3):274–85. doi:10.4161/cc.6.3.3797.

    Article  CAS  PubMed  Google Scholar 

  33. Mulder KW, Wang X, Escriu C, Ito Y, Schwarz RF, Gillis J, et al. Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol. 2012;14(7):753–63. doi:10.1038/ncb2520.

    Article  CAS  PubMed  Google Scholar 

  34. Tan DW, Jensen KB, Trotter MW, Connelly JT, Broad S, Watt FM. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development. 2013;140(7):1433–44. doi:10.1242/dev.087551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383(2):157–62. doi:10.1016/j.bbrc.2009.02.156.

    Article  CAS  PubMed  Google Scholar 

  36. Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47(2):83–91. doi:10.1016/j.oraloncology.2010.11.011.

    Article  PubMed  Google Scholar 

  37. Chiou S, Yu C, Huang C, Lin S, Liu S, Tsai T, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2013;14:4085–95. doi.

    Article  Google Scholar 

  38. Dallaglio K, Petrachi T, Marconi A, Truzzi F, Lotti R, Saltari A, et al. Isolation and characterization of squamous cell carcinoma-derived stem-like cells: role in tumor formation. Int J Mol Sci. 2013;14(10):19540–55. doi:10.3390/ijms141019540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ. 2011;18(9):1487–99. doi:10.1038/cdd.2011.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E, et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1855–66. doi:10.1158/0008-5472.CAN-12-3609-T.

    Article  CAS  PubMed  Google Scholar 

  41. Kikuchi K, Tsutsumi K, Ohta Y, Yasumoto S. Time correlation of commitment to calcium-induced apoptosis and terminal differentiation in human ectocervical keratinocytes in suspension cultures. Cell Growth Differ. 1997;8(5):571–9.

    CAS  PubMed  Google Scholar 

  42. Matsubara R, Kawano S, Kiyosue T, Goto Y, Hirano M, Jinno T, et al. Increased DeltaNp63 expression is predictive of malignant transformation in oral epithelial dysplasia and poor prognosis in oral squamous cell carcinoma. Int J Oncol. 2011;39(6):1391–9. doi:10.3892/ijo.2011.1151.

    CAS  PubMed  Google Scholar 

  43. Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, et al. DeltaNp63 versatilely regulates a Broad NF-kappaB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 2011;71(10):3688–700. doi:10.1158/0008-5472.CAN-10-3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chakrabarti R, Wei Y, Hwang J, Hang X, Andres Blanco M, Choudhury A, et al. DeltaNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nat Cell Biol. 2014;16(10):1004–15. doi:10.1038/ncb3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sommer M, Poliak N, Upadhyay S, Ratovitski E, Nelkin BD, Donehower LA, et al. DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle. 2006;5(17):2005–11. doi.

    Article  CAS  PubMed  Google Scholar 

  46. Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol. 2009;11(12):1451–7. doi:10.1038/ncb1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature. 2010;467(7318):986–90. doi:10.1038/nature09459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mattiske S, Ho K, Noll JE, Neilsen PM, Callen DF, Suetani RJ. TAp63 regulates oncogenic miR-155 to mediate migration and tumour growth. Oncotarget. 2013;4(11):1894–903. doi.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tan EH, Morton JP, Timpson P, Tucci P, Melino G, Flores ER, et al. Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene. 2014;33(25):3325–33. doi:10.1038/onc.2013.287.

    Article  CAS  PubMed  Google Scholar 

  50. Su X, Gi YJ, Chakravarti D, Chan IL, Zhang A, Xia X, et al. TAp63 is a master transcriptional regulator of lipid and glucose metabolism. Cell Metab. 2012;16(4):511–25. doi:10.1016/j.cmet.2012.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mitsuyo Yoshihara (Kanagawa Cancer Center Research Institute) for the assistance in RNA extraction from FFPE samples. This study was partly supported by a Grant-in-Aid for Scientific Research to KK (24593034) from the Ministry of Education, Science, Sports, and Culture.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Kikuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Semi-quantitative analysis of the effect of SIRT1 reduction on the expression of genes involved in the differentiation and maintenance of stemness in KOSC2 cells. Right panels show densitometry results of western blot analysis of SIRT1 or RT-PCR products normalized relative to G3PDH as 1. (JPEG 459 kb)

Supplementary Table 1

Quantification of gene expression in HNSCC cell lines shown in Figure 1. (DOCX 74 kb)

Supplementary Table 2

Clinicopathological parameters of 20 HNSCC biopsy samples analyzed in this study. (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, K., Noguchi, A., Kasajima, R. et al. Association of SIRT1 and tumor suppressor gene TAp63 expression in head and neck squamous cell carcinoma. Tumor Biol. 36, 7865–7872 (2015). https://doi.org/10.1007/s13277-015-3515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3515-y

Keywords

Navigation