Tumor Biology

, Volume 36, Issue 10, pp 7831–7840 | Cite as

MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7

  • Junhua Gong
  • Zheng Cui
  • Li Li
  • Qiang Ma
  • Qiufang Wang
  • Yinhe Gao
  • Hao SunEmail author
Research Article


Increasing evidence shows that abnormal microRNA (miRNA) expression is involved in tumorigenesis. MiR-25 was previously reported to act as tumor suppressor or oncogene in diverse cancers. However, their expression, function, and mechanism in gastric cancer (GC) are not well known. Here, we show that miR-25 was overexpressed in primary tumor tissues of GC patients and was significantly correlated with a more aggressive phenotype of GC in patients. MiR-25 inhibition significantly decreased the proliferation, invasion, and migration of GC cells in vitro. Furthermore, miR-25 repressed F-box and WD-40 domain protein 7 (FBXW7) expression by directly binding to 3-untranslated region (UTR) of FBXW7, and the inverse correlation was observed between the expressions of miR-25 and FBXW7 mRNA in primary GC tissues. Moreover, the restoration of FBXW7 led to suppressed proliferation, invasion, and migration of GC cells. In vivo, miR-25 promotes tumor growth of GC. Taken together, miR-25 promotes GC progression by directly downregulating FBXW7 expression and may be employed as a novel prognostic marker and therapeutic target of GC.


MicroRNA-25 FBXW7 Gastric cancer Proliferation Invasion Migration 


Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374:477–90.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37:1672–81.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang X, Chen X, Wang R, Xiao P, Xu Z, Chen L, et al. MicroRNA-200c modulates the epithelial-to-mesenchymal transition in human renal cell carcinoma metastasis. Oncol Rep. 2013;30:643–50.PubMedGoogle Scholar
  9. 9.
    Wang Z, Cai Q, Jiang Z, Liu B, Zhu Z, Li C. Prognostic role of MicroRNA-21 in gastric cancer: a meta-analysis. Med Sci Monit. 2014;20:1668–74.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Han TS, Hur K, Xu G, Choi B, Okugawa Y, Toiyama Y, Oshima H, Oshima M, Lee HJ, Kim VN, Chang AN, Goel A, Yang HK. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut. 2015;64:203–14.Google Scholar
  11. 11.
    Gong J, Li J, Wang Y, Liu C, Jia H, Jiang C, et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis. 2014;35:497–506.CrossRefPubMedGoogle Scholar
  12. 12.
    Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu S, et al. Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep. 2014;41:5693–700.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou X, Xia Y, Su J, Zhang G. Down-regulation of miR-141 induced by helicobacter pylori promotes the invasion of gastric cancer by targeting STAT4. Cell Physiol Biochem. 2014;33:1003–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, et al. MiRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9:824–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology. 2009;136:1689–700.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G: MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2014;34:2474–83.Google Scholar
  17. 17.
    Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng Y, Li G. Role of the ubiquitin ligase Fbw7 in cancer progression. Cancer Metastasis Rev. 2012;31:75–87.CrossRefPubMedGoogle Scholar
  19. 19.
    Brandt Y, Mitchell T, Wu Y, Hartley RS. Developmental downregulation of Xenopus cyclin E is phosphorylation and nuclear import dependent and is mediated by ubiquitination. Dev Biol. 2011;355:65–76.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001;294:173–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Milne AN, Leguit R, Corver WE, Morsink FH, Polak M, de Leng WW, et al. Loss of CDC4/FBXW7 in gastric carcinoma. Cell Oncol. 2010;32:347–59.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Li J, Guo Y, Liang X, Sun M, Wang G, De W, et al. MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4. J Cancer Res Clin Oncol. 2012;138:763–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Matuszcak C, Haier J, Hummel R, Lindner K. MicroRNAs: promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol. 2014;20:13658–66.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu HS, Xiao HS. MicroRNAs as potential biomarkers for gastric cancer. World J Gastroenterol. 2014;20:12007–17.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, et al. MiR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 2012;55:465–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 2011;3:108–24.CrossRefGoogle Scholar
  28. 28.
    Li Q, Zou C, Zou C, Han Z, Xiao H, Wei H, et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 2013;335:168–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Esposito F, Tornincasa M, Pallante P, Federico A, Borbone E, Pierantoni GM, et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab. 2012;97:E710–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Hagedorn M, Delugin M, Abraldes I, Allain N, Belaud-Rotureau MA, Turmo M, et al. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients. Cell Div. 2007;2:9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gu Z, Inomata K, Ishizawa K, Horii A. The FBXW7 beta-form is suppressed in human glioma cells. Biochem Biophys Res Commun. 2007;354:992–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Iwatsuki M, Mimori K, Ishii H, Yokobori T, Takatsuno Y, Sato T, et al. Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer. 2010;126:1828–37.PubMedGoogle Scholar
  34. 34.
    Lu D, Davis MP, Abreu-Goodger C, Wang W, Campos LS, Siede J, et al. MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs. PLoS One. 2012;7:e40938.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Junhua Gong
    • 1
  • Zheng Cui
    • 1
  • Li Li
    • 1
  • Qiang Ma
    • 1
  • Qiufang Wang
    • 1
  • Yinhe Gao
    • 1
  • Hao Sun
    • 1
    Email author
  1. 1.Health checkup CenterBeidaihe Sanatorium of Beijing Military Area Command, Chinese PLAQinhuangdaoChina

Personalised recommendations