Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8499–8510 | Cite as

Combretastatin A4 phosphate treatment induces vasculogenic mimicry formation of W256 breast carcinoma tumor in vitro and in vivo

  • Nan Yao
  • Ke Ren
  • Cuihua Jiang
  • Meng Gao
  • Dejian Huang
  • Xiao Lu
  • Bin Lou
  • Fei Peng
  • Aizhen Yang
  • Xiaoning Wang
  • Yicheng Ni
  • Jian Zhang
Research Article

Abstract

The purpose of this study was to investigate the effect of combretastatin A4 phosphate (CA4P) on vasculogenic mimicry (VM) channel formation in vitro and in vivo after a single-dose treatment and the underlying mechanism involved in supporting VM. In vitro model of three-dimensional cultures was used to test the effect of CA4P on the tube formation of Walker 256 cells. Western blot analysis was conducted to assess the expression of hypoxia-inducible factor (HIF)-1α and VM-associated markers. W256 tumor-bearing rat model was established to demonstrate the effect of CA4P on VM formation and tumor hypoxia by double staining and a hypoxic marker pimonidazole. Anti-tumor efficacy of CA4P treatment was evaluated by tumor growth curve. Under hypoxic conditions for 48 h in vitro, W256 cells formed VM network associated with increased expression of VM markers. Pretreatment with CA4P did not influence the amount of VM in 3-D culture as well as the expression of these key molecules. In vivo, W256 tumors showed marked intratumoral hypoxia after CA4P treatment, accompanied by increased VM formation. CA4P exhibited only a delay in tumor growth within 2 days but rapid tumor regrowth afterward. VM density was positively related to tumor volume and tumor weight at day 8. CA4P causes hypoxia which induces VM formation in W256 tumors through HIF-1α/EphA2/PI3K/matrix metalloproteinase (MMP) signaling pathway, resulting in the consequent regrowth of the damaged tumor.

Keywords

Vasculogenic mimicry Combretastatin A4 phosphate (CA4P) Hypoxia Tumor regrowth 

Notes

Acknowledgments

This work was partially supported by the grants awarded by Jiangsu Province Natural Science Foundation (No. BK2012775), the Key Scientific and Technological Project of Changzhou Health Bureau (No. ZD201404), the National Natural Science Foundation of China (No. 81473120), hospital foundation of Jiangsu Branch of China Academy of Chinese Medical Science (JSBY1308), and Changzhou Siyao foundation of hospital pharmacy (2014YX011).

Conflicts of interest

None.

References

  1. 1.
    Folberg R, Maniotis AJ. Vasculogenic mimicry. Apmis. 2004;112(7–8):508–25. doi: 10.1111/j.1600-0463.CrossRefPubMedGoogle Scholar
  2. 2.
    Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–52. doi: 10.1016/S0002-9440(10)65173-5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol. 2012;181(4):1115–25. doi: 10.1016/j.ajpath.2012.07.013.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vartanian AA, Stepanova EV, Gutorov SL, Solomko E, Grigorieva IN, Sokolova IN, et al. Prognostic significance of periodic acid-Schiff-positive patterns in clear cell renal cell carcinoma. Can J Urol. 2009;16(4):4726–32.PubMedGoogle Scholar
  5. 5.
    Shirakawa K, Tsuda H, Heike Y, Kato K, Asada R, Inomata M, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 2001;61(2):445–51.PubMedGoogle Scholar
  6. 6.
    Sharma N, Seftor RE, Seftor EA, Gruman LM, Heidger PM, Cohen MB, et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate. 2002;50(3):189–201. doi: 10.1002/pros.10048.CrossRefPubMedGoogle Scholar
  7. 7.
    Sun B, Zhang S, Zhao X, Zhang W, Hao X. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol. 2004;25(6):1609–14.PubMedGoogle Scholar
  8. 8.
    Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 2007;249(2):188–97. doi: 10.1016/j.canlet.2006.08.016.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang S, Li M, Zhang D, Xu S, Wang X, Liu Z, et al. Hypoxia influences linearly patterned programmed cell necrosis and tumor blood supply patterns formation in melanoma. Lab Invest. 2009;89(5):575–86. doi: 10.1038/labinvest.CrossRefPubMedGoogle Scholar
  10. 10.
    Hendrix MJ, Seftor RE, Seftor EA, Gruman LM, Lee LM, Nickoloff BJ, et al. Transendothelial function of human metastatic melanoma cells role of the microenvironment in cell-fate determination. Cancer Res. 2002;62(3):665–8.PubMedGoogle Scholar
  11. 11.
    Jain RK, Carmeliet P. SnapShot: tumor angiogenesis. Cell. 2012;149(6):1408-.e1. doi: 10.1016/j.cell.2012.05.025.CrossRefGoogle Scholar
  12. 12.
    Moserle L, Casanovas O. Anti-angiogenesis and metastasis: a tumour and stromal cell alliance. J Intern Med. 2013;273(2):128–37. doi: 10.1111/joim.12018.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu Y, Li Q, Li X, Yang Q, Xu W, Liu G. Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res. 2012;31(1):16. doi: 10.1186/1756-9966-31-16.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med. 2007;85(12):1301–7. doi: 10.1007/s00109-007-0281-3.CrossRefPubMedGoogle Scholar
  15. 15.
    Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets. 2006;10(2):267–80. doi: 10.1517/14728222.10.2.267.CrossRefPubMedGoogle Scholar
  16. 16.
    Ma J, Han S, Zhu Q, Zhao J, Zhang D, Wang L, et al. Role of twist in vasculogenic mimicry formation in hypoxic hepatocellular carcinoma cells in vitro. Biochem Biophys Res Commun. 2011;408(4):686–91. doi: 10.1016/j.bbrc.2011.04.089.CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Chen F, Cona MM, Feng Y, Himmelreich U, Oyen R, et al. A review on various targeted anticancer therapies. Target Oncol. 2012;7(1):69–85. doi: 10.1007/s11523-012-0212-2.CrossRefPubMedGoogle Scholar
  18. 18.
    Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev. 2011;37(1):63–74. doi: 10.1016/j.ctrv.2010.05.001.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang H, Sun X, Chen F, De Keyzer F, Yu J, Landuyt W, et al. Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Invest Radiol. 2009;44(1):44–53. doi: 10.1097/RLI.0b013e31818e5ace.CrossRefPubMedGoogle Scholar
  20. 20.
    Li J, Chen F, Feng Y, Cona MM, Yu J, Verbruggen A, et al. Diverse responses to vascular disrupting agent combretastatin a4 phosphate: a comparative study in rats with hepatic and subcutaneous tumor allografts using MRI biomarkers, microangiography, and histopathology. Transl Oncol. 2013;6(1):42–50. doi: 10.1593/tlo.12367.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Milanović D, Braun F, Weber W, Grosu AL, Behe M, Niedermann G. The influence of the combined treatment with Vadimezan (ASA404) and taxol on the growth of U251 glioblastoma xenografts. BMC Cancer. 2012;12(1):242. doi: 10.1186/1471-2407-12-242.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35. doi: 10.1038/nrc1628.CrossRefPubMedGoogle Scholar
  23. 23.
    Siemann DW, Chaplin DJ, Horsman MR. Vascular‐targeting therapies for treatment of malignant disease. Cancer. 2004;100(12):2491–9. doi: 10.1002/cncr.20299.CrossRefPubMedGoogle Scholar
  24. 24.
    Horsman MR, Siemann DW. Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res. 2006;66(24):11520–39. doi: 10.1158/0008-5472.CAN-06-2848.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5(7):516–25. doi: 10.1038/nrc1650.CrossRefPubMedGoogle Scholar
  26. 26.
    Zweifel M, Jayson GC, Reed N, Osborne R, Hassan B, Ledermann J, et al. Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Ann Oncol. 2011;22(9):2036–41. doi: 10.1093/annonc/mdq708.CrossRefPubMedGoogle Scholar
  27. 27.
    Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002;62(12):3408–16.PubMedGoogle Scholar
  28. 28.
    Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res. 2001;61(17):6413–22.PubMedGoogle Scholar
  29. 29.
    Horsman MR, Ehrnrooth E, Ladekarl M, Overgaard J. The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. Int J Radiat Oncol Biol Phys. 1998;42(4):895–8. doi: 10.1016/S0360-3016(98)00299-5.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao D, Jiang L, Hahn EW, Mason RP. Tumor physiologic response to combretastatin A4 phosphate assessed by MRI. Int J Radiat Oncol Biol Phys. 2005;62(3):872–80. doi: 10.1016/j.ijrobp.2005.03.009.CrossRefPubMedGoogle Scholar
  31. 31.
    Hess AR, Seftor EA, Gardner LM, Carles-Kinch K, Schneider GB, Seftor RE, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation role of epithelial cell kinase (Eck/EphA2). Cancer Res. 2001;61(8):3250–5.PubMedGoogle Scholar
  32. 32.
    Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2002;83(1):21–38. doi: 10.1046/j.1365-2613.2002.00211.x.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Prise VE, Honess DJ, Stratford MR, Wilson J, Tozer GM. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses. Int J Oncol. 2002;21(4):717–26. doi: 10.3892/ijo.21.4.717.PubMedGoogle Scholar
  34. 34.
    Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J. Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2002;54(1):215–28. doi: 10.1016/S0360-3016(02)02938-3.CrossRefPubMedGoogle Scholar
  35. 35.
    Bussink J, Kaanders JH, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol. 2003;67(1):3–15. doi: 10.1016/S0167-8140(03)00011-2.CrossRefPubMedGoogle Scholar
  36. 36.
    Kovacs EM, Ali RG, McCormack AJ. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem. 2002;277(8):6708–18. doi: 10.1074/jbc.M109640200.CrossRefPubMedGoogle Scholar
  37. 37.
    El-Emir E, Boxer GM, Petrie IA, Boden RW, Dearling JL, Begent RH, et al. Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice. Eur J Cancer. 2005;41(5):799–806. doi: 10.1016/j.ejca.2005.01.001.CrossRefPubMedGoogle Scholar
  38. 38.
    Siemann DW, Shi W. Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res. 2008;28(4B):2027–31.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E, et al. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov. 2012;2(5):434–49. doi: 10.1158/2159-8290.CD-11-0171.CrossRefPubMedGoogle Scholar
  40. 40.
    Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F, et al. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest. 2011;121(5):1969–73. doi: 10.1172/JCI44562.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shaked Y, Tang T, Woloszynek J, Daenen LG, Man S, Xu P, et al. Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents. Cancer Res. 2009;69(19):7524–8. doi: 10.1158/0008-5472.CAN-09-0381.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Oude Egbrink MG, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005;65(24):11520–8. doi: 10.1158/0008-5472.CAN-05-2468.CrossRefPubMedGoogle Scholar
  43. 43.
    Chaplin DJ, Hill SA. The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys. 2002;54(5):1491–6. doi: 10.1016/S0360-3016(02)03924-X.CrossRefPubMedGoogle Scholar
  44. 44.
    Li J, Sun Z, Zhang J, Shao H, Miranda Cona M, Wang H, et al. A dual-targeting anticancer approach: soil and seed principle. Radiology. 2011;260(3):799–807. doi: 10.1148/radiol.11102120.CrossRefPubMedGoogle Scholar
  45. 45.
    Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol. 2001;158(4):1279–88. doi: 10.1016/S0002-9440(10)64079-5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59(22):5830–5.PubMedGoogle Scholar
  47. 47.
    Maxwell P, Dachs G, Gleadle J, Nicholls L, Harris A, Stratford I, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1997;94(15):8104–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59(1):47–53. doi: 10.1016/S0006-2952(99)00292-0.CrossRefPubMedGoogle Scholar
  49. 49.
    Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res. 2012;18(10):2726–32. doi: 10.1158/1078-0432.CCR-11-3237.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paulis YW, Soetekouw PM, Verheul HM, Tjan-Heijnen VC, Griffioen AW. Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta. 2010;1806(1):18–28. doi: 10.1016/j.bbcan.2010.01.001.PubMedGoogle Scholar
  51. 51.
    Hess AR, Seftor EA, Seftor RE, Hendrix MJ. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63(16):4757–62.PubMedGoogle Scholar
  52. 52.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277(5323):225–8. doi: 10.1126/science.277.5323.225.CrossRefPubMedGoogle Scholar
  53. 53.
    Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000;148(3):615–24. doi: 10.1083/jcb.148.3.615.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, et al. Cooperative interactions of laminin 5 γ2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61(17):6322–7.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Nan Yao
    • 1
  • Ke Ren
    • 2
    • 3
  • Cuihua Jiang
    • 1
  • Meng Gao
    • 1
  • Dejian Huang
    • 1
  • Xiao Lu
    • 4
  • Bin Lou
    • 1
  • Fei Peng
    • 1
  • Aizhen Yang
    • 4
  • Xiaoning Wang
    • 1
  • Yicheng Ni
    • 1
    • 5
  • Jian Zhang
    • 1
  1. 1.Laboratory of Translational MedicineJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
  2. 2.Department of OrthopaedicsZhongda Hospital, Southeast UniversityNanjingChina
  3. 3.Department of OrthopedicsThe Third Affiliated Hospital of Soochow University (The First People’s Hospital of Changzhou)Changzhou CityChina
  4. 4.Center Laboratory of Cancer CenterThe Jingdu Hospital of NanjingNanjingChina
  5. 5.Faculty of MedicineKU LeuvenLeuvenBelgium

Personalised recommendations