Tumor Biology

, Volume 36, Issue 6, pp 4063–4074 | Cite as

Emerging role of silent information regulator 1 (SIRT1) in hepatocellular carcinoma: a potential therapeutic target

  • Yuting Wu
  • Xiaoming Meng
  • Cheng Huang
  • Jun Li


Hepatocellular carcinoma (HCC) is one of the most prevalent neoplasms worldwide, ranking as the second leading cause of cancer-related death due to its high invasive and metastatic potential. SIRT1 (silent information regulator 1), a member of mammalian sirtuin family protein (SIRT1–SIRT7), functions as a conserved nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase to implicate in the modulation of transcriptional silencing and cell survival. Recently, except for the regulatory role of SIRT1 in various biological processes, the carcinogenesis effect of SIRT1 was revealed in HCC. Importantly, SIRT1 was confirmed to be involved in tumorigenesis, metastasis, prognosis, and chemical resistant of HCC, as a result of its deacetylation of oncogenic or tumor suppressor factors. The focus of this review was to delineate the carcinogenesis effects of SIRT1 on HCC and present an overview of SIRT1 functions in normal liver followed by SIRT1 roles in HCC, with focus on the underlying molecular mechanism to promote SIRT1 as a new therapeutic target for HCC.


Silent information regulator 1 (SIRT1) Hepatocellular carcinoma (HCC) Proliferation Apoptosis Therapies 



Silent information regulator 1


Hepatocellular carcinoma


Peroxisome proliferator-activated receptor-γ coactivator 1α


Peroxisome proliferator-activated receptor-γ


Liver X receptor


Farnesoid X receptor


Sterol regulatory element-binding protein


Forkhead box O


Nuclear factor-κB


Cellular homologue of avian myelocytomatosis virus oncogene


Hypoxia-inducible transcription factors


Autophagy-related gene


Nonalcoholic fatty liver disease


Nicotinamide adenine dinucleotide


Archaeoglobus fulgidus




Caloric restriction


CREB-regulated transcription coactivator 2


Peroxisome proliferator-activated receptor a


Endoplasmic reticulum


ATP-binding cassette transporter A1


Hepatocyte nuclear factor 1α


Period gene 2


Hepatitis B virus


Mouse proximal tubular


Specificity protein-1


Urokinase-type plasminogen activator




3′-Untranslated region


Cancer stem cells


Fatty acid synthase


Hydroxy-3-methyl-glutaryl-coa reductase


Epithelial to mesenchymal transition


AMP-activated protein kinase


Human telomerase reverse transcriptase


Human telomerase RNA component


Telomeric repeat-binding factors


Protection of telomeres 1


TRF1-interacting protein 2


POT1-TIN2 organizing protein


Repressor/activator protein 1


Yes-associated protein


TEA domain family member 4


Phosphatase and tensin homologue deleted on chromosome 10


Phosphatidylinositol 3 kinase


Protein kinase B


3-Phosphoinositide-dependent protein kinase-1


Apo-100-lycopenoic acid


Inhibitor of NF-κB


IκB kinase



This project was supported by the National Science Foundation of China (No. 81473268, No. 81273526) and Anhui Science and Technology research projects (No. 1301042212)

Conflicts of interest



  1. 1.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedGoogle Scholar
  2. 2.
    Carter D. New global survey shows an increasing cancer burden. Am J Nurs. 2014;114:17.Google Scholar
  3. 3.
    El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology. 2004;126:460–8.PubMedGoogle Scholar
  4. 4.
    Ruhl CE, Everhart JE. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology. 2003;124:71–9.PubMedGoogle Scholar
  5. 5.
    Chuang SC, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett. 2009;286:9–14.PubMedGoogle Scholar
  6. 6.
    Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X, et al. Annual report on status of cancer in China, 2010. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. 2014;26:48–58.PubMedGoogle Scholar
  7. 7.
    El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134:1752–63.PubMedGoogle Scholar
  8. 8.
    Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.PubMedGoogle Scholar
  10. 10.
    Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in saccharomyces cerevisiae. Genetics. 1987;116:9–22.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989;56:771–6.PubMedGoogle Scholar
  12. 12.
    Liang Z, Yang Y, Wang H, Yi W, Yan X, Yan J, et al. Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo. Mol Cancer Ther. 2014;13:1860–72.PubMedGoogle Scholar
  13. 13.
    Holloway KR, Barbieri A, Malyarchuk S, Saxena M, Nedeljkovic-Kurepa A, Cameron Mehl M, et al. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol Endocrinol. 2013;27:480–90.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31:4619–29.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang L, Wang X, Chen P. MiR-204 down regulates SIRT1 and reverts Sirt1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer. 2013;13:290.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Han L, Liang XH, Chen LX, Bao SM, Yan ZQ. Sirt1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. Int J Clin Exp Pathol. 2013;6:2357–65.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen W, Bhatia R. Roles of SIRT1 in leukemogenesis. Curr Opin Hematol. 2013;20:308–13.PubMedGoogle Scholar
  18. 18.
    Wilking MJ, Singh C, Nihal M, Zhong W, Ahmad N. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch Biochem Biophys. 2014;563:94–100.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang H, Liu H, Chen K, Xiao J, He K, Zhang J, et al. SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling. Oncol Rep. 2012;28:311–8.PubMedGoogle Scholar
  20. 20.
    Curtil C, Enache LS, Radreau P, Dron AG, Scholtes C, Deloire A, et al. The metabolic sensors FXRα, PGC1-α, and SIRT1 cooperatively regulate hepatitis B virus transcription. FASEB J: Off Publ Fed Am Soc Exp Biol. 2014;28:1454–63.Google Scholar
  21. 21.
    Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD complex. Cell. 2001;105:269–79.PubMedGoogle Scholar
  22. 22.
    Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol. 2001;8:621–5.PubMedGoogle Scholar
  23. 23.
    Yuan H, Marmorstein R. Structural basis for sirtuin activity and inhibition. J Biol Chem. 2012;287:42428–35.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chakrabarty SP, Balaram H. Reversible binding of zinc in plasmodium falciparum SIR2: structure and activity of the apoenzyme. Biochim Biophys Acta. 1804;2010:1743–50.Google Scholar
  25. 25.
    Avalos JL, Boeke JD, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell. 2004;13:639–48.PubMedGoogle Scholar
  26. 26.
    Sanders BD, Zhao K, Slama JT, Marmorstein R. Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Mol Cell. 2007;25:463–72.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao K, Harshaw R, Chai X, Marmorstein R. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. Proc Natl Acad Sci U S A. 2004;101:8563–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S. Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem. 2004;11:873–85.PubMedGoogle Scholar
  29. 29.
    van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis. 1991;14:407–20.PubMedGoogle Scholar
  30. 30.
    Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends endocrinol Metab: TEM. 2014;25:138–45.PubMedGoogle Scholar
  31. 31.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.PubMedGoogle Scholar
  32. 32.
    Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456:269–73.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 2014;146:801–11.PubMedGoogle Scholar
  35. 35.
    Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J: Off Publ Fed Am Soc Exp Biol. 2011;25:1664–79.Google Scholar
  36. 36.
    Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010;24:1403–17.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28:91–106.PubMedGoogle Scholar
  38. 38.
    Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009;10:392–404.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim DH, et al. Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol. 2012;32:1226–36.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.PubMedGoogle Scholar
  41. 41.
    Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–40.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Bellet MM, Nakahata Y, Boudjelal M, Watts E, Mossakowska DE, Edwards KA, et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci U S A. 2013;110:3333–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Simone PortmannChen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71:4138–49.Google Scholar
  44. 44.
    Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, et al. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 2013;12:499–508.PubMedGoogle Scholar
  45. 45.
    Chen HC, Jeng YM, Yuan RH, Hsu HC, Chen YL. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 2012;19:2011–9.PubMedGoogle Scholar
  46. 46.
    Choi HN, Bae JS, Jamiyandorj U, Noh SJ, Park HS, Jang KY, et al. Expression and role of SIRT1 in hepatocellular carcinoma. Oncol Rep. 2011;26:503–10.PubMedGoogle Scholar
  47. 47.
    Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33:2557–67.PubMedGoogle Scholar
  48. 48.
    Hao C, Zhu P, Yang X, Han Z, Jiang J, Zong C, et al. Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer. 2014;14:978.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ding W, You H, Dang H, LeBlanc F, Galicia V, Lu SC, et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology. 2010;52:945–53.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Liang XJ, Finkel T, Shen DW, Yin JJ, Aszalos A, Gottesman MM. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res: MCR. 2008;6:1499–506.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Lowinger TB, Riedl B, Dumas J, Smith RA. Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des. 2002;8:2269–78.PubMedGoogle Scholar
  52. 52.
    Mann A, Breuhahn K, Schirmacher P, Wilhelmi A, Beyer C, Rosenau A, et al. Up- and down-regulation of granulocyte/macrophage-colony stimulating factor activity in murine skin increase susceptibility to skin carcinogenesis by independent mechanisms. Cancer Res. 2001;61:2311–9.PubMedGoogle Scholar
  53. 53.
    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.PubMedGoogle Scholar
  54. 54.
    Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol. 2014;11:645–7.PubMedGoogle Scholar
  55. 55.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedGoogle Scholar
  56. 56.
    Yau T, Chan P, Ng KK, Chok SH, Cheung TT, Fan ST, et al. Phase 2 open-label study of single-agent sorafenib in treating advanced hepatocellular carcinoma in a hepatitis B-endemic Asian population: presence of lung metastasis predicts poor response. Cancer. 2009;115:428–36.PubMedGoogle Scholar
  57. 57.
    Abou-Alfa GK, Amadori D, Santoro A, Figer A, De Greve J, Lathia C, et al. Safety and efficacy of sorafenib in patients with hepatocellular carcinoma (HCC) and Child-Pugh A versus B cirrhosis. Gastrointest Cancer Res: GCR. 2011;4:40–4.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Xie Y, Zhang J, Ye S, He M, Ren R, Yuan D, et al. SirT1 regulates radiosensitivity of hepatoma cells differently under normoxic and hypoxic conditions. Cancer Sci. 2012;103:1238–44.PubMedGoogle Scholar
  59. 59.
    Hu Y, Wang S, Wu X, Zhang J, Chen R, Chen M, et al. Chinese herbal medicine-derived compounds for cancer therapy: a focus on hepatocellular carcinoma. J Ethnopharmacol. 2013;149:601–12.PubMedGoogle Scholar
  60. 60.
    Lin HC, Chen YF, Hsu WH, Yang CW, Kao CH, Tsai TF. Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model. Cancer Prev Res. 2012;5:952–62.Google Scholar
  61. 61.
    Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295:G833–42.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, et al. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol Renal Physiol. 2011;301:F427–35.PubMedGoogle Scholar
  63. 63.
    Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev. 2010;36:43–53.PubMedGoogle Scholar
  64. 64.
    Rajasekaran D, Elavarasan J, Sivalingam M, Ganapathy E, Kumar A, Kalpana K, et al. Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep. 2011;4:1211–7.PubMedGoogle Scholar
  65. 65.
    Kozuki Y, Miura Y, Yagasaki K. Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action. Cancer Lett. 2001;167:151–6.PubMedGoogle Scholar
  66. 66.
    Yeh CB, Hsieh MJ, Lin CW, Chiou HL, Lin PY, Chen TY, et al. The antimetastatic effects of resveratrol on hepatocellular carcinoma through the downregulation of a metastasis-associated protease by SP-1 modulation. PLoS One. 2013;8, e56661.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kuo PL, Chiang LC, Lin CC. Resveratrol- induced apoptosis is mediated by p53-dependent pathway in Hep G2 cells. Life Sci. 2002;72:23–34.PubMedGoogle Scholar
  68. 68.
    Huang C, Ma WY, Goranson A, Dong Z. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis. 1999;20:237–42.PubMedGoogle Scholar
  69. 69.
    Shih A, Davis FB, Lin HY, Davis PJ. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. J Clin Endocrinol Metab. 2002;87:1223–32.PubMedGoogle Scholar
  70. 70.
    Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74:619–24.PubMedGoogle Scholar
  71. 71.
    Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280:17187–95.PubMedGoogle Scholar
  72. 72.
    Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45.PubMedGoogle Scholar
  73. 73.
    Zschoernig B, Mahlknecht U. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun. 2009;381:372–7.PubMedGoogle Scholar
  74. 74.
    Ahmad KA, Harris NH, Johnson AD, Lindvall HC, Wang G, Ahmed K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther. 2007;6:1006–12.PubMedGoogle Scholar
  75. 75.
    Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9:1253–62.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedGoogle Scholar
  77. 77.
    Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143:811–20. e811-815.PubMedGoogle Scholar
  78. 78.
    Zhang H, Feng Z, Huang R, Xia Z, Xiang G, Zhang J. MicroRNA-449 suppresses proliferation of hepatoma cell lines through blockade lipid metabolic pathway related to SIRT1. Int J Oncol. 2014;45:2143–52.PubMedGoogle Scholar
  79. 79.
    Parpart S, Roessler S, Dong F, Rao V, Takai A, Ji J, et al. Modulation of miR-29 expression by α-fetoprotein is linked to the hepatocellular carcinoma epigenome. Hepatology. 2014;60:872–83.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, et al. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 2009;50:100–10.PubMedGoogle Scholar
  81. 81.
    Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007;104:15472–7.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.PubMedGoogle Scholar
  83. 83.
    Lou W, Chen Q, Ma L, Liu J, Yang Z, Shen J, et al. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med. 2013;91:715–25.PubMedGoogle Scholar
  84. 84.
    Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285:12604–11.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell. 2013;12:1062–72.PubMedGoogle Scholar
  86. 86.
    Duarte MS, Castro RE, Ferreira DM, Afonso MB, Borralho PM, Machado MV, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58:119–25.Google Scholar
  87. 87.
    Ferreira DM, Afonso MB, Rodrigues PM, Simao AL, Pereira DM, Borralho PM, et al. c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver. Mol Cell Biol. 2014;34:1100–20.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. microRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem. 2012;287:9817–26.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286:25992–6002.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Streissguth AP, Bookstein FL, Barr HM, Sampson PD, O’Malley K, Young JK. Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J Dev Behav Pediatr: JDBP. 2004;25:228–38.PubMedGoogle Scholar
  91. 91.
    Thompson KJ, Humphries JR, Niemeyer DJ, Sindram D, McKillop IH. The effect of alcohol on Sirt1 expression and function in animal and human models of hepatocellular carcinoma (HCC). Adv Exp Med Biol. 2015;815:361–73.PubMedGoogle Scholar
  92. 92.
    Zhang YY, Zhou LM. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol. 2013;698:137–44.PubMedGoogle Scholar
  93. 93.
    Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.PubMedGoogle Scholar
  94. 94.
    Levine AJ, Finlay CA, Hinds PW. p53 is a tumor suppressor gene. Cell. 2004;116:S67–9. 61 p following S69.PubMedGoogle Scholar
  95. 95.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.PubMedGoogle Scholar
  96. 96.
    Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.PubMedGoogle Scholar
  98. 98.
    Zhang ZY, Hong D, Nam SH, Kim JM, Paik YH, Joh JW, et al. SIRT1 regulates oncogenesis via a mutant p53-dependent pathway in hepatocellular carcinoma. J Hepatol. 2015;62:121–30.PubMedGoogle Scholar
  99. 99.
    Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012;72:4394–404.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.PubMedGoogle Scholar
  101. 101.
    Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.PubMedGoogle Scholar
  102. 102.
    de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–10.PubMedGoogle Scholar
  103. 103.
    Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.PubMedGoogle Scholar
  104. 104.
    Deng Y, Chan SS, Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer. 2008;8:450–8.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Oh BK, Jo Chae K, Park C, Kim K, Jung Lee W, Han KH, et al. Telomere shortening and telomerase reactivation in dysplastic nodules of human hepatocarcinogenesis. J Hepatol. 2003;39:786–92.PubMedGoogle Scholar
  106. 106.
    Oh BK, Kim H, Park YN, Yoo JE, Choi J, Kim KS, et al. High telomerase activity and long telomeres in advanced hepatocellular carcinomas with poor prognosis. Lab Invest; J Tech Methods Pathol. 2008;88:144–52.Google Scholar
  107. 107.
    Zhang B, Chen J, Cheng AS, Ko BC. Depletion of sirtuin 1 (SIRT1) leads to epigenetic modifications of telomerase (TERT) gene in hepatocellular carcinoma cells. PLoS One. 2014;9, e84931.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the drosophila homolog of YAP. Cell. 2005;122:421–34.PubMedGoogle Scholar
  109. 109.
    Stanger BZ. Quit your YAPing: a new target for cancer therapy. Genes Dev. 2012;26:1263–7.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Anakk S, Bhosale M, Schmidt VA, Johnson RL, Finegold MJ, Moore DD. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 2013;5:1060–9.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L, Singh S, et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014;147:690–701.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Sylvester KG, Colnot S. Hippo/YAP, beta-catenin, and the cancer cell: a “menage a trois” in hepatoblastoma. Gastroenterology. 2014;147:562–5.PubMedGoogle Scholar
  113. 113.
    Perra A, Kowalik MA, Ghiso E, Ledda-Columbano GM, Di Tommaso L, Angioni MM, et al. YAP activation is an early event and a potential therapeutic target in liver cancer development. J Hepatol. 2014;61:1088–96.PubMedGoogle Scholar
  114. 114.
    Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene. 2014;33:1468–74.PubMedGoogle Scholar
  115. 115.
    Psyrri A, Arkadopoulos N, Vassilakopoulou M, Smyrniotis V, Dimitriadis G. Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2012;12:1347–57.PubMedGoogle Scholar
  116. 116.
    Wysocki PJ. Targeted therapy of hepatocellular cancer. Expert Opin Invest Drugs. 2010;19:265–74.Google Scholar
  117. 117.
    Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A. 2012;109:E187–96.PubMedGoogle Scholar
  118. 118.
    Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B, et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 2011;43:1573–81.PubMedGoogle Scholar
  119. 119.
    Jang KY, Noh SJ, Lehwald N, Tao GZ, Bellovin DI, Park HS, et al. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One. 2012;7, e45119.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100:10794–9.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14:312–23.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Ip BC, Hu KQ, Liu C, Smith DE, Obin MS, Ausman LM, et al. Lycopene metabolite, apo-10′-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev Res. 2013;6:1304–16.Google Scholar
  123. 123.
    Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2000;89:2274–81.PubMedGoogle Scholar
  124. 124.
    Gang D, Hongwei H, Hedai L, Ming Z, Qian H, Zhijun L. The tumor suppressor protein menin inhibits NF-κB-mediated transactivation through recruitment of Sirt1 in hepatocellular carcinoma. Mol Biol Rep. 2013;40:2461–6.PubMedGoogle Scholar
  125. 125.
    Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007;282:6823–32.PubMedGoogle Scholar
  126. 126.
    Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q. Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol. 2007;213:88–97.PubMedGoogle Scholar
  127. 127.
    Song S, Luo M, Song Y, Liu T, Zhang H, Xie Z. Prognostic role of SIRT1 in hepatocellular carcinoma. J Coll Physicians Surg Pak: JCPSP. 2014;24:849–54.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yuting Wu
    • 1
    • 2
  • Xiaoming Meng
    • 1
    • 2
  • Cheng Huang
    • 1
    • 2
  • Jun Li
    • 1
    • 2
  1. 1.School of PharmacyAnhui Medical UniversityHefeiChina
  2. 2.Institute for Liver DiseasesAnhui Medical University (AMU)HefeiChina

Personalised recommendations