Tumor Biology

, Volume 36, Issue 10, pp 7607–7614 | Cite as

CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma

  • M. K. Sibin
  • Dhananjaya I. Bhat
  • K. V. L. Narasingarao
  • Ch. Lavanya
  • G. K. Chetan
Research Article


Human high-grade glioma is heterogeneous in nature based on pathological and genetic profiling. Various tumour suppressor gene alterations are considered as prognostic markers in high-grade glioma. Gene expression of CDKN2A (p16) is used in various cancers as a prognostic biomarker along with methylation and deletion status of this gene. Expression levels of p16 mRNA were not studied as a biomarker in gliomas before. In this study, we have performed mRNA quantification analysis on 48 high-grade glioma tissues and checked for a possible prognostic role. The decreased expression of p16 mRNA in majority of the tumour tissues (57.1 %) was observed when compared to control tissues (P = 0.02). mRNA expression level was correlated with clinical variables also. p16 deletion status and BMI1 mRNA expression were also considered for comparison. p16 mRNA was negatively correlated with the BMI1 mRNA (P = <0.0001) but not with p16 deletion. p16 mRNA expression, midline shift in MRI and tumour type were able to predict patient survival in overall survival (OS) and progression-free survival (PFS). p16 mRNA could independently predict prognosis of OS (P = 0.0146) and PFS (P = 0.0305) in multivariate analysis. We have shown that p16 mRNA expression can act as an independent prognostic biomarker in high-grade glioma.


Glioma p16 Gene expression Decreased expression 



Mr. Sibin M K is a CSIR-Senior Research Fellow; thus, financial support provided by CSIR, New Delhi, is kindly acknowledged. This study was financially supported by DST-SERB, Government of India. Histopathological diagnosis was done by the neuropathology department, NIMHANS duly acknowledged.

Conflicts of interest



  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology. 2013;15 suppl 2:ii1–56.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  4. 4.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23(58):9392–400.CrossRefPubMedGoogle Scholar
  5. 5.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cruceru ML, Neagu M, Demoulin JB, Constantinescu SN. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. J Cell Mol Med. 2013;17(10):1218–35.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Agarwal P, Kabir FML, DeInnocentes P, Bird RC. Tumor suppressor gene p16/INK4A/P16 and its role in cell cycle exit, differentiation, and determination of cell fate. Tumor suppressor genes. Rijeka, Croatia: InTech Open Access Pub, 1–34; 2012.Google Scholar
  9. 9.
    Park IK, Morrison SJ, Clarke MF. BMI1, stem cells, and senescence regulation. J Clin Investig. 2004;113(2):175.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jiang L, Song L, Wu J, Yang Y, Zhu X, Hu B, et al. Bmi-1 promotes glioma angiogenesis by activating NF-κB signaling. PLoS One. 2013;8(1), e55527.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, et al. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer. 2012;12(1):406.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999;13(20):2678–90.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arima Y, Hayashi N, Hayashi H, Sasaki M, Kai K, Sugihara E, et al. Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor‐negative breast cancer. Int J Cancer. 2012;130(11):2568–79.CrossRefPubMedGoogle Scholar
  14. 14.
    Sibin MK, Bhat DI, Lavanya C, Manoj MJ, Aakershita S, Chetan GK. P16 exon-wise deletion status and novel somatic mutations in Indian glioma patients. Tumor Biol. 2014;35(2):1467–72.CrossRefGoogle Scholar
  15. 15.
    Sibin MK, Bhat DI, Lavanya C, Arati S, Chetan GK. Over-expression and lack of copy number variation in BMI-1 gene in human glioma from Indian population. Oncology Letters. 2015;(In Press).Google Scholar
  16. 16.
    Alves TR, Lima FRS, Kahn SA, Lobo D, Dubois LGF, Soletti R, et al. Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci. 2011;89(15):532–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Juratli TA, Kirsch M, Geiger K, Klink B, Leipnitz E, Pinzer T, et al. The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neuro-Oncol. 2012;110(3):325–33.CrossRefGoogle Scholar
  18. 18.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  19. 19.
    Liu W, Lv G, Li Y, Wang B. Down regulation of P16 and suppression of cyclin D1 gene expressions in malignant gliomas. J Exp Clin Cancer Res. 2011;30(1):1–7.CrossRefGoogle Scholar
  20. 20.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Costello JF, Berger MS, Huang HS, Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 1996;56(10):2405–10.PubMedGoogle Scholar
  22. 22.
    Fueyo J, Gomez-Manzano C, Bruner JM, Saito Y, Zhang B, Zhang W, et al. Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene. 1996;13(8):1615–9.PubMedGoogle Scholar
  23. 23.
    Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blamey RW, Nicholson RI, et al. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin Cancer Res. 2000;6(7):2777–87.PubMedGoogle Scholar
  24. 24.
    Oshima M, Okano K, Muraki S, Haba R, Maeba T, Suzuki Y, et al. Immunohistochemically detected expression of 3 major genes (P16/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann Surg. 2013;258(2):336–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Mihic‐Probst D, Mnich CD, Oberholzer PA, Seifert B, Sasse B, Moch H, et al. p16 expression in primary malignant melanoma is associated with prognosis and lymph node status. Int J Cancer. 2006;118(9):2262–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Dalle JH, Fournier M, Nelken B, Mazingue F, Laı̈ JL, Bauters F, et al. p16INK4a immunocytochemical analysis is an independent prognostic factor in childhood acute lymphoblastic leukemia. Blood. 2002;99(7):2620–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Geisler SA, Olshan AF, Weissler MC, Cai J, Funkhouser WK, Smith J, et al. p16 and p53 protein expression as prognostic indicators of survival and disease recurrence from head and neck cancer. Clin Cancer Res. 2002;8(11):3445–53.PubMedGoogle Scholar
  28. 28.
    González-Quevedo R, Iniesta P, Morán A, de Juan C, Sánchez-Pernaute A, Fernández C, et al. Cooperative role of telomerase activity and p16 expression in the prognosis of non-small-cell lung cancer. J Clin Oncol. 2002;20(1):254–62.PubMedGoogle Scholar
  29. 29.
    Puduvalli VK, Kyritsis AP, Hess KR, Bondy ML, Fuller GN, Kouraklis GP, et al. Patterns of expression of Rb and p16 in astrocytic gliomas, and correlation with survival. Int J Oncol. 2000;17(5):963–72.PubMedGoogle Scholar
  30. 30.
    Lee CT, Capodieci P, Osman I, Fazzari M, Ferrara J, Scher HI, et al. Overexpression of the cyclin-dependent kinase inhibitor p16 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res. 1999;5(5):977–83.PubMedGoogle Scholar
  31. 31.
    Dong Y, Walsh MD, McGuckin MA, Gabrielli BG, Cummings MC, Wright RG, et al. Increased expression of cyclin-dependent kinase inhibitor 2 (P16) gene product P16INK4A in ovarian cancer is associated with progression and unfavourable prognosis. Int J Cancer. 1997;74(1):57–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Dublin EA, Patel NK, Gillett CE, Smith P, Peters G, Barnes DM. Retinoblastoma and p16 proteins in mammary carcinoma: their relationship to cyclin D1 and histopathological parameters. Int J Cancer. 1998;79(1):71–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Simon M, Simon C, Köster G, Hans VH, Schramm J. Conditional expression of the tumor suppressor p16 in a heterotopic glioblastoma model results in loss of pRB expression. J Neuro-Oncol. 2002;60(1):1–12.CrossRefGoogle Scholar
  34. 34.
    Zolota V, Tsamandas AC, Aroukatos P, Panagiotopoulos V, Maraziotis T, Poulos C, et al. Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas. Correlation with classic prognostic factors and patients’ outcome. Neuropathology. 2008;28(1):35–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res. 2001;7(8):2387–95.PubMedGoogle Scholar
  36. 36.
    Kamiryo T, Tada K, Shiraishi S, Shinojima N, Nakamura H, Kochi M, et al. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastoma multiforme. J Neurosurg. 2002;96(5):815–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Nakamura M, Konishi N, Hiasa Y, Tsunoda S, Fukushima Y, Tsuzuki T, et al. Immunohistochemical detection of CDKN2, retinoblastoma and p53 gene products in primary astrocytic tumors. Int J Oncol. 1996;8(5):889–93.PubMedGoogle Scholar
  38. 38.
    Cenci T, Martini M, Montano N, D’Alessandris QG, Falchetti ML, Annibali D, et al. Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol. 2012;138(3):390–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Farivar S, Zati Keikha R, Shiari R, Jadali F. Expression of bmi-1 in pediatric brain tumors as a new independent prognostic marker of patient survival. BioMed Research International, 2013; 2013.Google Scholar
  40. 40.
    Wu Z, Wang Q, Wang L, Li G, Liu H, Fan F, et al. Combined aberrant expression of BMI1 and EZH2 is predictive of poor prognosis in glioma patients. J Neurol Sci. 2013;335(1):191–6.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • M. K. Sibin
    • 1
  • Dhananjaya I. Bhat
    • 2
  • K. V. L. Narasingarao
    • 2
  • Ch. Lavanya
    • 1
  • G. K. Chetan
    • 1
  1. 1.Department of Human GeneticsNational Institute of Mental Health and Neuro SciencesBangaloreIndia
  2. 2.Department of NeurosurgeryNational Institute of Mental Health and Neuro SciencesBangaloreIndia

Personalised recommendations